Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To analyze the differential expression profiles of microRNAs (miRNAs) in spermatozoa of patients with sperm DNA damage and to investigate the role of miRNAs in sperm DNA damage. Male infertility patients with sperm DNA damage who attended the First Affiliated Hospital of Henan University of Chinese Medicine from October 2023 to December 2023 were selected and included in this study as a case group. Fertile healthy men who were seen at the health check-up center during the same period and diagnosed by examination were also included as a control group. Sperm miRNA expression was detected in patients with sperm DNA damage (case group, = 5) and healthy medical check-ups (control group, = 5) using high-throughput sequencing technology. The differentially expressed miRNAs between the two groups were bioinformatically analyzed to explore the main biological functions of the target genes. We found that 63 miRNAs were significantly changed in the spermatozoa of patients with sperm DNA damage,|log2 (foldchange)| ≥ 1, < .05. Gene Ontology (GO) enrichment analysis indicated that these differential miRNAs might be involved in developmental process, anatomical structure development, cellular macromolecule metabolic process, multicellular organism development, system development, and so on. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that that they mainly affect the PI3K-AKT signaling pathway. The present study suggests that the altered expression of miR-1255a, miR-921, and miR-3156-5p may play an important role in the sperm DNA damage process, and the mechanism may involve the phosphatidylinositol-3'-kinase-AKT (PI3K-AKT) signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528732PMC
http://dx.doi.org/10.1177/15579883241286672DOI Listing

Publication Analysis

Top Keywords

sperm dna
28
dna damage
24
patients sperm
16
spermatozoa patients
8
case group
8
control group
8
enrichment analysis
8
pi3k-akt signaling
8
signaling pathway
8
dna
7

Similar Publications

Purpose Of Review: Infertility affects approximately 15% of couples, with male factors implicated in more than 50% of cases. Concerns over declining semen quality - evidenced by a more than 50% drop in sperm concentration over four decades - have triggered investigation into modifiable lifestyle and environmental factors. This review summarizes recent evidence on exposures that negatively impact male fertility.

View Article and Find Full Text PDF

Phosphomimetic experiments do not support a causal role for TFAM phosphorylation in mtDNA elimination in sperm.

J Mol Biol

September 2025

University of South Alabama, Department of Physiology and Cell Biology, 5851 USA Dr. North, Mobile, AL 36688, USA. Electronic address:

In sexually reproducing eukaryotes-particularly mammals-mitochondrial DNA (mtDNA) is typically inherited from a single parent, making uniparental mtDNA inheritance a fundamental feature of eukaryotic biology. Recently, it has been suggested that spermatozoa contain no mtDNA because the matrix targeting sequence (MTS) of the mitochondrial transcription factor A (TFAM) becomes phosphorylated, which prevents the mitochondrial import of this protein essential for mtDNA replication. In this study, we used a combination of the GeneSwap technique and phosphomimetic mutations to investigate the impact of TFAM MTS phosphorylation on mtDNA maintenance in cultured cells.

View Article and Find Full Text PDF

Early-life programming is a major determinant of lifelong metabolic health, yet current preventive strategies focus almost exclusively on maternal factors. Emerging experimental and preclinical data reveal that a father's diet before conception, particularly high-fat intake, also shapes offspring physiology. Here, we synthesize the latest evidence on how such diets remodel the sperm epigenome during two discrete windows of vulnerability: (i) testicular spermatogenesis, via DNA methylation and histone modifications, and (ii) post-testicular epididymal maturation, where small non-coding RNAs are selectively gained.

View Article and Find Full Text PDF

Objective: To investigate the relationship among seminal oxidation-reduction potential (nORP), sperm DNA fragmentation (DFI) and semen parameters in patients with varicocele.

Methods: Clinical data of 522 patients treated in the reproductive andrology clinic of the Northern Theater General Hospital from November 2023 to December 2023 were retrospectively analyzed, including 435 men of childbearing age and 87 men of infertile age. The patients were divided into the varicocele group (n=116) and non-varicocele group (n=406) according to clinical diagnosis.

View Article and Find Full Text PDF

Extracellular vesicles: key mediators in embryo production.

Front Vet Sci

August 2025

Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Nano-sized extracellular vesicles (EVs) possess a lipid bilayer and are secreted from cells into their surrounding environment. The transport of multiple biomolecules, including DNA together with RNA, microRNAs (miRNAs), lipids, proteins, and metabolites, happens through biofluids via EVs for intercellular communication. Extracellular vesicles play crucial roles during the embryo production (IVEP) process.

View Article and Find Full Text PDF