98%
921
2 minutes
20
Introduction: Smartphones are proving useful in assessing movement and speech function in Alzheimer's disease and other neurodegenerative conditions. Valid outcomes across different smartphones are needed before population-level tests are deployed. This study introduces the TapTalk protocol, a novel app designed to capture hand and speech function and validate it in smartphones against gold-standard measures.
Methods: Twenty different smartphones collected video data from motor tests and audio data from speech tests. Features were extracted using Google Mediapipe (movement) and Python audio analysis packages (speech). Electromagnetic sensors (60 Hz) and a microphone acquired simultaneous movement and voice data, respectively.
Results: TapTalk video and audio outcomes were comparable to gold-standard data: 90.3% of video, and 98.3% of audio, data recorded tapping/speech frequencies within ± 1 Hz of the gold-standard measures.
Discussion: Validation of TapTalk across a range of devices is an important step in the development of smartphone-based telemedicine and was achieved in this study.
Highlights: TapTalk evaluates hand motor and speech functions across a wide range of smartphones.Data showed 90.3% motor and 98.3% speech accuracy within +/-1 Hz of gold standards.Validation advances smartphone-based telemedicine for neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496774 | PMC |
http://dx.doi.org/10.1002/dad2.70025 | DOI Listing |
Arterioscler Thromb Vasc Biol
September 2025
Institute of Cardiovascular Diseases and Department of Cardiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu (K.L., H.M., W.J
Background: The estimated glucose disposal rate (eGDR) is a validated surrogate marker of insulin resistance. However, its association with stroke and dementia in nondiabetic populations remains insufficiently investigated.
Methods: This prospective cohort study included nondiabetic participants from the UK Biobank.
Lab Chip
September 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.
View Article and Find Full Text PDFJ Neurochem
September 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.
View Article and Find Full Text PDFJ Neuropsychiatry Clin Neurosci
September 2025
Departments of Psychiatry and Neurology, Center for Brain/Mind Medicine, and Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston.
Neuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.
View Article and Find Full Text PDF