98%
921
2 minutes
20
Tim-1 (T-cell immunoglobulin and mucin domain 1), also known as Kim-1 (kidney injury molecule 1) or hepatitis A virus cellular receptor 1 (HAVCR1), is a transmembrane protein expressed on various immune and epithelial cells. It plays a role in modulating inflammatory and immune responses. In this study, we find that Tim-1 is overexpressed in hepatocellular carcinoma (HCC) samples and that its expression is significantly correlated with postoperative survival. Bulk RNA sequencing reveals a general upregulation of extracellular matrix-related genes in HCC tissues with Tim-1 overexpression. The results of the cell and experiments reveal that Tim-1 in HCC not only affects biological processes such as the proliferation, migration, and invasion of HCC cells but also broadly promotes extracellular matrix processes by influencing cytokine secretion. Further studies demonstrate that Tim-1 mediates the activation of hepatic stellate cells and upregulates Th1 and Th2 cytokines, thereby promoting HCC progression. Thus, Tim-1 may represent a novel target for future interventions in HCC and liver fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693869 | PMC |
http://dx.doi.org/10.3724/abbs.2024191 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China. Electronic address:
Malignant tumors present a major global health burden, as they generally have a poor prognosis, and the efficacy of available treatments is limited. Copine family members (CPNEs) play crucial roles in the regulation of tumor cell proliferation, metastasis, and therapeutic resistance, as well as in tumor diagnosis and prognostic risk stratification. CPNEs can facilitate tumor cell survival by regulating cell cycle progression and cell death.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran.
The development of high-performance neural interfaces is critical for advancing brain-machine communication and treating neurological disorders. A major challenge in neural electrode design is achieving a seamless biological-electronic interface with optimized electrochemical properties, mechanical stability, and biocompatibility. In this study, we introduce a hierarchical micronanostructured poly(3,4-ethylenedioxythiophene)-polydopamine (PEDOT-PDA) coating on titanium nitride (TiN) microelectrodes engineered to enhance electrophysiological signal recording and neural integration.
View Article and Find Full Text PDFAnn Rheum Dis
September 2025
Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA.
Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.
Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.
Trends Immunol
September 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:
Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.
View Article and Find Full Text PDF