98%
921
2 minutes
20
Dissolution is a ubiquitous process in nature and industry. However, due to technical difficulties, the detailed dissolution process at the nanoscale has seldom been captured experimentally. In this study, we investigated the dissolution dynamics in the confinement of toluene surface nanodroplets on polystyrene (PS) thin films in oversaturated toluene/water mixture solutions. This was achieved by adjusting the immersion durations from several minutes to 9 h. Dissolution takes place upon the deposition of nanodroplets on the PS surfaces, leading to the formation of surface nanostructures. Interestingly, we found that the induced nanostructures underwent complex morphological changes, from complex nanocraters with central bulges and/or multiple rims to simple nanocraters. We speculate that diffusiophoresis plays a key role in the formation of the complex nanocraters, as it facilitates the transportation of dissolved PS molecules inside the nanodroplets. We believe this finding not only enhances our understanding of dissolution dynamics at the nanoscale but also holds promise for applications in dissolution-based nanopatterning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c02270 | DOI Listing |
Langmuir
May 2025
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.
This study investigates the self-assembly of hybrid poly(amidoamine)-peptide dendrimers (DendriPeps) into shear-responsive vesicle-like structures with nanometric thickness, called "Nanocoats", that are capable of encapsulating nano- and microscale particles. To assess the material-agnostic coating power of DendriPeps, we tested the formation of Nanocoats on a variety of synthetic and biological substrates, including polystyrene nanoparticles, poly(-isopropylacrylamide) microgels, gallium-indium liquid metal nanodroplets, and bacteriophages and lentiviruses. Specifically, we utilized spectroscopic and microscopic techniques to monitor the reversible assembly of Nanocoats on the surface of the particles upon controlling the shear stress of the surrounding aqueous phase.
View Article and Find Full Text PDFLangmuir
February 2025
Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.
View Article and Find Full Text PDFLangmuir
November 2024
School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, People's Republic of China.
Dissolution is a ubiquitous process in nature and industry. However, due to technical difficulties, the detailed dissolution process at the nanoscale has seldom been captured experimentally. In this study, we investigated the dissolution dynamics in the confinement of toluene surface nanodroplets on polystyrene (PS) thin films in oversaturated toluene/water mixture solutions.
View Article and Find Full Text PDFMolecules
August 2023
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA.
The importance of conductive polymers has significantly increased over the decade due to their various applications, such as in electronic devices, sensors, and photovoltaics. Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) is one of the most successfully and widely used polymers in practical applications. Spin coating is extensively used to fabricate these conductive films; however, it has disadvantages.
View Article and Find Full Text PDFNanotechnology
May 2021
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
Pathways to fabricate self-organized nanostructures have been identified exploiting the instabilities of ultrathin (<100 nm) polystyrene (PS) film on the polydimethylsiloxane (PDMS) substrates loaded with discrete and closely packed gold nanoparticles (AuNPs). The AuNPs were deposited on the PDMS substrates by chemical treatment, and the size and periodicity of the AuNPs were varied before coating the PS films. The study unveils that the physicochemical heterogeneity created by the AuNPs on the PDMS surface could guide the hole-formation, influence the average spacing between the holes formed at the initial dewetting stage, and affects the spacing and periodicity of the droplets formed at the end of the dewetting phase.
View Article and Find Full Text PDF