98%
921
2 minutes
20
Background: Porcine pathogenic Escherichia coli (E. coli), the globally recognized important pathogen, causes significant economic loss in the field. Enterotoxigenic E. coli (ETEC) causes porcine neonatal and post-weaning diarrhea (PWD), frequently carrying F4 adhesin, F18 adhesin, Heat-Stable toxin (ST), and Heat-Labile toxin (LT). Shiga Toxin-Producing E. coli (STEC) produces F18 adhesin and Shiga toxin type 2e (stx2e), majorly leading to systemic endothelial cell damage and edema disease. In this study, hemolytic pathogenic hybrid STEC/ETEC strains carrying ST and LT genes of ETEC and the Stx2e gene of STEC isolated from pigs with PWD in Taiwan were identified. The pathogenicity of a Taiwan hybrid STEC/ETEC strain was evaluated by oral inoculation in post-weaning pigs.
Results: Next generation sequencing and multilocus sequence typing of two hybrid Taiwan porcine STEC/ETEC isolates indicated that these two isolates were closely related to the ST88 porcine hybrid STEC/ETEC isolated from pigs with watery diarrhea. Furthermore, the two hybrid Taiwan porcine STEC/ETEC isolates also displayed combinations of multiple resistance genes encoding mechanisms for target modification and antibiotic inactivation. Animal experiments confirmed that the Taiwan hybrid STEC/ETEC could cause watery diarrhea in post-weaning pigs with no signs of edema disease and minimal histopathological lesions.
Conclusion: To the best of the authors' knowledge, the present study is the first study demonstrating intestinal pathogenicity of the hybrid STEC/ETEC in pigs. The result suggests that the hybrid STEC/ETEC should be considered as a new emerging pathogen and a new target for vaccine development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492512 | PMC |
http://dx.doi.org/10.1186/s12917-024-04317-z | DOI Listing |
Int J Food Microbiol
May 2025
Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
This study investigated commensal and pathogenic E. coli isolated from pigs at farms and slaughterhouses in Sardinia, focusing on genetic relatedness and antimicrobial resistance (AMR). Samples were collected from six fattening pig farms (A-F) and five slaughterhouses (S1-S5).
View Article and Find Full Text PDFJ Med Microbiol
January 2025
NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.
Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.
View Article and Find Full Text PDFBMC Vet Res
October 2024
Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan.
Background: Porcine pathogenic Escherichia coli (E. coli), the globally recognized important pathogen, causes significant economic loss in the field. Enterotoxigenic E.
View Article and Find Full Text PDFVet Microbiol
September 2024
National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China
Mol Biol Rep
April 2024
Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
Background: Escherichia coli (E. coli) serves as a common indicator of gut microbiota and is utilized for monitoring antimicrobial resistance determinants in food-producing animals. This study aimed to investigate antimicrobial resistance patterns in virulence gene-positive E.
View Article and Find Full Text PDF