Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir/(Co,Fe)-OH/MI). This Ir/(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm and 257 mV at 600 mA cm as well as an ultra-small Tafel slope of 24 mV dec. Furthermore, Ir/(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750697PMC
http://dx.doi.org/10.1038/s41565-024-01807-xDOI Listing

Publication Analysis

Top Keywords

single atoms
8
oxygen evolution
8
evolution reaction
8
out-of-plane coordination
4
coordination iridium
4
iridium single
4
atoms organic
4
organic molecules
4
molecules cobalt-iron
4
cobalt-iron hydroxides
4

Similar Publications

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

A robust and computationally efficient methodology to compute Auger decay rates is presented that combines equation-of-motion coupled cluster singles and doubles two-particle Auger density matrices (also known as two-particle Dyson matrices) with precalculated bound-continuum integrals from atomic calculations, known as the one-center approximation. Illustrative applications include KLL Auger electron spectra (AES) of several small and medium-sized molecules.

View Article and Find Full Text PDF

Electrocatalytic water oxidation with bioinspired cubane-type Co complexes.

Dalton Trans

September 2025

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.

Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.

View Article and Find Full Text PDF

Electronic Structure Reconfiguration of Zn-NB Sites for Enhanced Fenton-Like Catalysis.

Angew Chem Int Ed Engl

September 2025

College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P.R. China.

Despite growing interest in single-atom catalysts (SACs) for Fenton-like reactions, zinc (Zn)-based SACs remain unexplored due to the inherent inertness of Zn, whose fully occupied 3d electronic configuration limits redox activity. Here, we overcome this limitation by introducing boron (B) atoms to reconfigure the electronic structure of Zn-N coordination sites, yielding an activated catalyst denoted as Zn-NBC. This electronic modulation transforms inert Zn-N sites into catalytically active centers (Zn-NB ), enabling significantly enhanced Fenton-like activity.

View Article and Find Full Text PDF

Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.

View Article and Find Full Text PDF