98%
921
2 minutes
20
Ferroptosis is iron-dependent programmed cell death that inhibits tumor growth, particularly in traditional treatment-resistant tumors. Prognostic models constructed from ferroptosis-related genes are lacking; prognostic biomarkers remain insufficient. We acquired gene expression data and corresponding clinical information for bladder cancer (BC) samples from public databases. Ferroptosis-related genes from the ferroptosis database were screened for clinical predictive value. We validated gene expression differences between tumors and normal tissues through polymerase chain reaction and western blotting. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were conducted to explore signaling pathways affecting the overall survival of patients with BC. CIBERSORT was used to quantify the infiltration of 22 immune cell types. We identified 6 genes (EGFR, FADS1, ISCU, PGRMC1, PTPN6, and TRIM26) to construct the prognostic risk model. The high-risk group had a poorer overall survival than the low-risk group. Receiver operating characteristic curves demonstrated excellent predictive accuracy. The validation cohort and 3 independent datasets confirmed the models' general applicability and stability. BC tissues had elevated FADS1, PTPN6, and TRIM26 mRNA and protein levels and decreased ISCU levels. Enrichment analysis indicated that neurosecretory activity might be the main pathway affecting the overall survival. High- and low-risk groups had significantly different immune cell infiltration. Specific ferroptosis-related gene expression was associated with immune cell infiltration levels. The risk score was significantly correlated with patients' clinical characteristics. A novel, widely applicable risk model with independent predictive value for the prognosis of patients with BC was established; candidate molecules for future BC research were identified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495766 | PMC |
http://dx.doi.org/10.1097/MD.0000000000040133 | DOI Listing |
Nanotoxicology
September 2025
Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Mol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Shanghai Vitalgen BioPharma Co., Ltd., Shanghai 201210, China.
Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.
View Article and Find Full Text PDF