Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Glioblastoma multiforme (GBM) is one of the most invasive types of brain cancer. LncRNAs can be considered a new prognostic and diagnostic biomarker in GBM. This study comprehensively explored the interaction of lncRNAs with mRNAs in the TCGA database and proposed a novel promising biomarker with favorable diagnostic and prognostic values.

Methods: The public data of RNA-seq and related clinical data were downloaded from the TCGA database. Differential expression analysis was conducted in R. GO and KEGG signaling pathways were used for enrichment. The STRING database was used for PPI analysis. CE-network was constructed by STAR database. Kaplan-Meier survival analysis and ROC curve analysis to indicate the biomarkers' diagnostic and prognostic values.

Results: Differentially expressed data illustrated that 4428 mRNAs were differentially expressed in GBM. The GO and KEGG pathway analysis showed that the differentially expressed mRNAs were enriched in critical biological processes. The PPI showed that and were the important PPI hubs. The ceRNA network data demonstrated critical lncRNAs. The data revealed that the lncRNA , , , and are potential diagnostic prognostic biomarkers in the GBM patients.

Conclusion: Altogether, we demonstrated lncRNA, and mRNA interaction and mentioned regulatory networks, considered a therapeutic option in GBM. In addition, we proposed potential diagnostic and prognostic biomarkers for the patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490338PMC
http://dx.doi.org/10.18502/ijph.v53i9.16462DOI Listing

Publication Analysis

Top Keywords

diagnostic prognostic
20
differentially expressed
12
glioblastoma multiforme
8
tcga database
8
potential diagnostic
8
prognostic biomarkers
8
diagnostic
6
prognostic
6
gbm
5
data
5

Similar Publications

Rotator cuff tendinopathy is a common cause of shoulder pain and dysfunction, presenting in two primary forms: calcific and non-calcific. These subtypes differ significantly in their pathophysiology, clinical manifestations, and natural history, necessitating tailored diagnostic and therapeutic approaches. This review delineates the clinical presentations of calcific rotator cuff tendinopathy (RCCT), characterized by distinct pre-calcific, calcific, and post-calcific stages, and contrasts them with the more insidious, degenerative course of non-calcific rotator cuff tendinopathy.

View Article and Find Full Text PDF

Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.

Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic respiratory disorder characterized by airway inflammation and irreversible airflow limitation. Its marked heterogeneity and complexity pose significant challenges to traditional clinical assessments in terms of prognostic prediction and personalized management. In recent years, the exploration of biomarkers has opened new avenues for the precise evaluation of COPD, particularly through multi-biomarker prediction models and integrative multimodal data strategies, which have substantially improved the accuracy and reliability of prognostic assessments.

View Article and Find Full Text PDF

The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists.

View Article and Find Full Text PDF