Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aggregation and slow migration of nanoparticles in aqueous media have caused serious concerns about their fate and impacts in the subsurface environment. Anthropogenic release and distribution of TiO nanoparticles (TNP) have immense potential for surface adsorption, occlusion, impregnation, bioaccumulation, and phase partition into various environmental compartments, and the actual risks in their interactions are still unknown. In an attempt to realize the extent of source zone migration of TNP in a fracture-skin-matrix (F-S-M) medium, a numerical model is developed and analyzed for sensitivity of certain features of the flow field. In addition, the sorptive mass transfer is simulated under four characteristic scenarios with varying assumptions pertaining to the intrinsic heterogeneities. The simulation results highlight the non-selective regulatory role of the skin in providing temporary interfacial space for reversible adsorption between the fracture and the matrix as well as in retarding the desorption rate. A preferential detachment of TNP is observed to be favored by the enhanced properties of skin due to the similarity in diffusion and dispersion coefficients. Out of the four scenarios, the two-site model and two-step model simulated the dynamic pore-filling features of adsorption pertaining to the heterogeneities in TNP and F-S-M characteristics. The results demonstrate that the proposed numerical could fairly detect the transition between local equilibrium and dynamic adsorption-desorption cycles that would eventually determine the mass transfer limitations and the extent of elution of TNP along the flow.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177008DOI Listing

Publication Analysis

Top Keywords

mass transfer
12
tio nanoparticles
8
intrinsic heterogeneities
8
sorptive mass
8
tnp
5
numerical analysis
4
analysis fate
4
fate transport
4
transport tio
4
nanoparticles fractured
4

Similar Publications

We determine the low-energy constants f_{0}, L_{4}^{r} and L_{5}^{r} of SU(3) chiral perturbation theory from a lattice QCD calculation of the scalar form factors of the pion with fully controlled systematics. Lattice results are computed on a large set of N_{f}=2+1 gauge ensembles covering four lattice spacings a∈[0.049,0.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.

View Article and Find Full Text PDF

Profiling the metabolome of adenomyosis-associated infertility patients to predict the pregnancy outcome of frozen embryo transfer.

Front Endocrinol (Lausanne)

September 2025

State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University, Third Hospital, Beijing, China.

Objective: This study explores the metabolic profiles in the peripheral blood of infertile patients with adenomyosis (ADM) to identify key metabolites affecting pregnancy outcomes in these patients undergoing frozen embryo transfer (FET). Our goal is to create a metabolite-based clinical prediction model for pregnancy outcomes in adenomyosis-associated infertility.

Methods: This prospective cohort study from the Reproductive Center at Peking University Third Hospital enrolled 94 infertile patients with adenomyosis and control (CTRL) patients undergoing FET.

View Article and Find Full Text PDF

Thermopower regulation of thermocells electrolyte engineering: progress and prospects.

Chem Commun (Camb)

September 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Thermocells (TECs) represent a promising technology for sustainable low-grade waste heat (<100 °C) harvesting, offering distinct advantages such as scalability, structural versatility, and high thermopower. However, their practical applications are still hindered by low energy conversion efficiency and stability issues. In recent studies, electrolyte engineering has been highlighted as a critical strategy to enhance their thermopower by regulating the solvation structure and redox ion concentration gradient, thereby improving conversion efficiency.

View Article and Find Full Text PDF