The Face and Features of RNU4-2: A New, Common, Recognizable, Yet Hidden Neurodevelopmental Disorder.

Pediatr Neurol

Rady Children's Institute for Genomic Medicine, San Diego, California; Departments of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, California; Division of Neurology, Rady Children's Hospital, San Diego, California. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: RNU4-2 is a newly identified, noncoding gene responsible for a significant proportion of individuals with neurodevelopmental disorders (NDDs). Diagnosis is hampered by the inability of commonly employed clinical testing methods, including exome sequencing and currently formulated multigene panels, to detect variants in the noncoding region. The relatively high prevalence of this condition, predicted to affect thousands of undiagnosed children with NDDs, makes it even more relevant to have better tools to facilitate diagnosis. The initial report of the gene-disease association outlined aggregate phenotypic features but lacked detailed patient evaluations, potentially under-reporting phenotypic features and failing to highlight unique aspects. We aimed to identify individuals with RNU4-2 gene variants to deeply phenotype the clinical profile. We sought to define key features that may suggest the diagnosis, to highlight individuals for whom specialized testing, able to detect noncoding region variants, may be indicated.

Methods: We reviewed genomic data from 6,734 individuals, identifying five with recurrent de novo RNU4-2 (n.64_65insT) variants. We clinically evaluated four. Findings were compared with those previously reported.

Results: We identify common clinical features, a distinctive dysmorphic facial pattern, and shared imaging abnormalities. We describe novel aspects including longitudinal trajectory and treatment response.

Conclusions: Enhanced recognition of the RNU4-2 (n.64_65insT-common variant) phenotype, particularly the dysmorphic facial features, will facilitate earlier diagnosis. Distinctive characteristics will guide the selection of patients for testing able to detect RNU4-2 variants: genome sequencing or targeted gene testing. Furthermore, health and research systems may identify undiagnosed patients by querying databases for individuals exhibiting the traits described herein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pediatrneurol.2024.09.015DOI Listing

Publication Analysis

Top Keywords

noncoding region
8
phenotypic features
8
testing detect
8
dysmorphic facial
8
rnu4-2
6
individuals
5
variants
5
features
5
face features
4
features rnu4-2
4

Similar Publications

Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

Tachinid flies act as key biological vectors in elucidating plant-insect-microbe dynamic interactions. We report the mitochondrial genome sequence of from China. The mitogenome spans 14,775 base pairs in length, with a GC content of 21.

View Article and Find Full Text PDF

Latitudinal-environmental variations driving the local adaptation of stocks along the Chinese coast.

Mar Life Sci Technol

August 2025

Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.

Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.

View Article and Find Full Text PDF

Recursive splice sites are rare motifs postulated to facilitate splicing across massive introns and shape isoform diversity, especially for long, brain-expressed genes. The necessity of this unique mechanism remains unsubstantiated, as does the role of recursive splicing (RS) in human disease. From analyses of rare copy number variants (CNVs) from almost one million individuals, we previously identified large, heterozygous deletions eliminating an RS site (RS1) in the first intron of that conferred substantial risk for attention deficit hyperactivity disorder (ADHD) and other neurobehavioral traits.

View Article and Find Full Text PDF