Publications by authors named "Rachita Yadav"

X-linked dystonia parkinsonism (XDP) is a progressive adult-onset neurogenerative disorder caused by the insertion of a SINE-VNTR-Alu (SVA) retrotransposon in gene. One element of the SVA is a tandem polymorphic CCCTCT repeat tract whose length inversely correlates with the age of disease onset. Previous observations that the repeat exhibits length-dependent somatic expansion and that XDP onset is modified by variation in DNA repair gene indicated that somatic repeat expansion is an important disease driver.

View Article and Find Full Text PDF

Background: Laryngeal dystonia (LD) is isolated task-specific focal dystonia, predominantly impairing speech production. Clinical observations and population survey studies have reported that up to 58% of patients with LD may have symptom improvement following alcohol intake.

Objectives: To determine the objective characteristics of alcohol responsiveness in LD using a standardized alcohol challenge test and genetic testing.

View Article and Find Full Text PDF

Glycine is an obligatory co-agonist at excitatory NMDA receptors in the brain, especially in the dentate gyrus, which has been postulated to be crucial for the development of psychotic associations and memories with psychotic content. Drugs modulating glycine levels are in clinical development for improving cognition in schizophrenia. However, the functional relevance of the regulation of glycine metabolism by endogenous enzymes is unclear.

View Article and Find Full Text PDF

Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 (ELP1) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons.

View Article and Find Full Text PDF

New technologies and large-cohort studies have enabled novel variant discovery and association at unprecedented scale, yet functional characterization of these variants remains paramount to deciphering disease mechanisms. Approaches that facilitate parallelized genome editing of cells of interest or induced pluripotent stem cells (iPSCs) have become critical tools toward this goal. Here, we developed an approach that incorporates libraries of CRISPR-Cas9 guide RNAs (gRNAs) together with inducible Cas9 into a piggyBac (PB) transposon system to engineer dozens to hundreds of genomic variants in parallel against isogenic cellular backgrounds.

View Article and Find Full Text PDF

There is a paucity of genetic characterization in people with Parkinson's disease (PD) of Latino and Afro-Caribbean descent. Screening LRRK2 and GBA variants in 32 New Yorkers of Puerto Rican ethnicity with PD and in 119 non-Hispanic-non-Jewish European PD cases revealed that Puerto Rican participants were more likely to harbor the LRRK2-p.G2019S variant (15.

View Article and Find Full Text PDF

Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 ( ) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons.

View Article and Find Full Text PDF

The biological significance of a small supernumerary marker chromosome that results in dosage alterations to chromosome 9p24.1, including triplication of the gene encoding glycine decarboxylase, in two patients with psychosis is unclear. In an allelic series of copy number variant mouse models, we identify that triplication of reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) but not in CA1, suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference.

View Article and Find Full Text PDF
Article Synopsis
  • Point mutations and structural variants that disrupt MEF2C coding sequences are linked to various neurodevelopmental disorders, but the detailed effects on neurodevelopment and the regulatory mechanisms remain unclear.
  • Researchers created an allelic series of human stem cells and neurons with CRISPR-engineered mutations to investigate how these changes affect MEF2C expression, finding notable alterations in gene expressions related to neurodevelopment and synaptic function.
  • The study revealed that deleting MEF2C decreases synaptic activity and impacts gene expression significantly, while changes to specific genomic boundaries can buffer against some regulatory disruptions, illustrating the complexity of genetic regulation in neuronal cells.
View Article and Find Full Text PDF
Article Synopsis
  • - This study offers a new method to analyze genetic influences on autism by exploring a large area of the genome instead of just mapping individual gene associations.
  • - Researchers identified a significant region (the 33-Mb p-arm of chromosome 16) that has a higher concentration of genetic factors linked to autism, including the 16p11.2 copy number variant.
  • - The findings show both common and rare genetic variations on chromosome 16 are linked to lower gene expression levels, suggesting they may work together in affecting autism risk.
View Article and Find Full Text PDF

Chromosome 16p11.2 reciprocal genomic disorder, resulting from recurrent copy-number variants (CNVs), involves intellectual disability, autism spectrum disorder (ASD), and schizophrenia, but the responsible mechanisms are not known. To systemically dissect molecular effects, we performed transcriptome profiling of 350 libraries from six tissues (cortex, cerebellum, striatum, liver, brown fat, and white fat) in mouse models harboring CNVs of the syntenic 7qF3 region, as well as cellular, transcriptional, and single-cell analyses in 54 isogenic neural stem cell, induced neuron, and cerebral organoid models of CRISPR-engineered 16p11.

View Article and Find Full Text PDF

X-linked dystonia-parkinsonism (XDP) is a progressive adult-onset neurodegenerative disorder caused by insertion of a SINE-VNTR-Alu (SVA) retrotransposon in the TAF1 gene. The SVA retrotransposon contains a CCCTCT hexameric repeat tract of variable length, whose length is inversely correlated with age at onset. This places XDP in a broader class of repeat expansion diseases, characterized by the instability of their causative repeat mutations.

View Article and Find Full Text PDF

Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk.

View Article and Find Full Text PDF

Dystonia is a neurologic disorder associated with an increasingly large number of genetic variants in many genes, resulting in characteristic disturbances in volitional movement. Dissecting the relationships between these mutations and their functional outcomes is critical in understanding the pathways that drive dystonia pathogenesis. Here we established a pipeline for characterizing an allelic series of dystonia-specific mutations.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus play a key role in the regulation of reproductive function. In this study, we sought an efficient method for generating GnRH neurons from human embryonic and induced pluripotent stem cells (hESC and hiPSC, respectively). First, we found that exposure of primitive neuroepithelial cells, rather than neuroprogenitor cells, to fibroblast growth factor 8 (FGF8), was more effective in generating GnRH neurons.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate if patients with congenital insensitivity to pain had unidentified mutations not found in standard genetic testing by using whole-exome sequencing.
  • Researchers conducted whole-exome sequencing on 13 patients who lacked a molecular diagnosis despite conventional genetic tests and also assessed their overall health through various examinations.
  • The results revealed pathogenic genetic causes in all patients across 9 genes, highlighting the importance of whole-exome sequencing for quicker diagnoses and potential future gene therapy enrollment.
View Article and Find Full Text PDF

Four genes associated with isolated dystonia are currently well replicated and validated. DYT-THAP1 manifests as young-onset generalized dystonia with predominant craniocervical symptoms; and is associated with mostly deleterious missense variation in the THAP1 gene. De novo and inherited missense and protein truncating variation in GNAL as well as primarily missense variation in ANO3 cause isolated focal and/or segmental dystonia with preference for the upper half of the body and older ages at onset.

View Article and Find Full Text PDF

Objective: To report 4 novel mutations leading to laryngeal and cervical dystonia with frequent generalization.

Methods: We screened 4 families including a total of 11 definitely affected members with a clinical picture resembling the original description.

Results: Four novel variants in the gene have been identified: D295N, R46M, Q424H, and R121W.

View Article and Find Full Text PDF

Over the last two years, remarkable gene discovery efforts have implicated disruption of pathways involving gene regulatory functions and neuronal processes in autism spectrum disorder (ASD), and more broadly defined neurodevelopmental disorders (NDDs). Functional studies in the developing brain and across cell types demonstrate that the spatiotemporal expression patterns of many of these genes coalesce on subnetworks with distinct developmental trajectories. Here, we review the convergent biological processes derived from gene discovery and functional genomics in ASD and NDD from 2018-2020.

View Article and Find Full Text PDF

Asparaginase-associated pancreatitis is a life-threatening toxicity to childhood acute lymphoblastic leukemia treatment. To elucidate genetic predisposition and asparaginase-associated pancreatitis pathogenesis, ten trial groups contributed remission samples from patients aged 1.0-17.

View Article and Find Full Text PDF

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories.

View Article and Find Full Text PDF

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression.

View Article and Find Full Text PDF