Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

X-linked dystonia-parkinsonism (XDP) is a progressive adult-onset neurodegenerative disorder caused by insertion of a SINE-VNTR-Alu (SVA) retrotransposon in the TAF1 gene. The SVA retrotransposon contains a CCCTCT hexameric repeat tract of variable length, whose length is inversely correlated with age at onset. This places XDP in a broader class of repeat expansion diseases, characterized by the instability of their causative repeat mutations. Here, we observe similar inverse correlations between CCCTCT repeat length with age at onset and age at death and no obvious correlation with disease duration. To gain insight into repeat instability in XDP we performed comprehensive quantitative analyses of somatic instability of the XDP CCCTCT repeat in blood and in seventeen brain regions from affected males. Our findings reveal repeat length-dependent and expansion-based instability of the XDP CCCTCT repeat, with greater levels of expansion in brain than in blood. The brain exhibits regional-specific patterns of instability that are broadly similar across individuals, with cerebellum exhibiting low instability and cortical regions exhibiting relatively high instability. The spectrum of somatic instability in the brain includes a high proportion of moderate repeat length changes of up to 5 repeats, as well as expansions of ~ 20- > 100 repeats and contractions of ~ 20-40 repeats at lower frequencies. Comparison with HTT CAG repeat instability in postmortem Huntington's disease brains reveals similar brain region-specific profiles, indicating common trans-acting factors that contribute to the instability of both repeats. Analyses in XDP brains of expansion of a different SVA-associated CCCTCT located in the LIPG gene, and not known to be disease-associated, reveals repeat length-dependent expansion at overall lower levels relative to the XDP CCCTCT repeat, suggesting that expansion propensity may be modified by local chromatin structure. Together, the data support a role for repeat length-dependent somatic expansion in the process(es) driving the onset of XDP and prompt further investigation into repeat dynamics and the relationship to disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994295PMC
http://dx.doi.org/10.1186/s40478-022-01349-0DOI Listing

Publication Analysis

Top Keywords

ccctct repeat
20
repeat length-dependent
16
repeat
15
somatic instability
12
instability xdp
12
xdp ccctct
12
instability
11
length-dependent somatic
8
xdp
8
sva retrotransposon
8

Similar Publications

A hexamer tandem repeat RNA embedded within an SVA retrotransposon drives R-loop formation and neurodegeneration.

Cell Rep

July 2025

Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address: jennifer.erwins@gma

Retrotransposon activation is emerging as a significant factor in neurodegenerative disease pathogenesis. SINE-VNTR-Alu (SVAs) are hominid-specific retrotransposons that create genetic variation through insertion polymorphisms and variable short tandem repeat (STR) lengths. We investigate how the SVA (CCCTCT) STR contributes to the striatal neurodegenerative disorder X-linked dystonia parkinsonism (XDP), where the repeat expansion length within the pathogenic SVA is inversely correlated with age at disease onset.

View Article and Find Full Text PDF

X-linked dystonia parkinsonism (XDP) is a progressive adult-onset neurogenerative disorder caused by the insertion of a SINE-VNTR-Alu (SVA) retrotransposon in gene. One element of the SVA is a tandem polymorphic CCCTCT repeat tract whose length inversely correlates with the age of disease onset. Previous observations that the repeat exhibits length-dependent somatic expansion and that XDP onset is modified by variation in DNA repair gene indicated that somatic repeat expansion is an important disease driver.

View Article and Find Full Text PDF

Genomic characterization of Huntington's disease genetic modifiers informs drug target tractability.

Brain Commun

January 2025

Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaR3E 0T6.

Huntington's disease is caused by a CAG repeat in the gene. Repeat length correlates inversely with the age of onset but only explains part of the observed clinical variability. Genome-wide association studies highlight DNA repair genes in modifying disease onset, but further research is required to identify causal genes and evaluate their tractability as drug targets.

View Article and Find Full Text PDF

X-linked dystonia-parkinsonism (XDP) is a progressive adult-onset neurodegenerative disorder caused by insertion of a SINE-VNTR-Alu (SVA) retrotransposon in the TAF1 gene. The SVA retrotransposon contains a CCCTCT hexameric repeat tract of variable length, whose length is inversely correlated with age at onset. This places XDP in a broader class of repeat expansion diseases, characterized by the instability of their causative repeat mutations.

View Article and Find Full Text PDF