Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pyracantha fortuneana (P. fortuneana), as a medicinal and edible plant resource, is rich in nutrients. In order to screen the high quality yeast used in Firebone fruit wine, 12 strains of yeast were isolated and purified from P. fortuneana fermentation broth by traditional pure culture method. They were identified by molecular biology as Pichia kudriavzevii (P. kudriavzevii) and Saccharomyces cerevisiae (S. cerevisiae), respectively. Strain HJ-2 could grow normally at 30℃, alcohol content 15%, SO mass concentration 360 mg/L, pH 3.2, sucrose mass concentration 400 g/L and glucose mass concentration 250 g/L. Strain HJ-6 could grow normally at 30℃, alcohol content 3%, SO concentration 360 mg/L, pH 3.2, sucrose concentration 250 g/L, glucose concentration 300 g/L. Based on the technological characteristics of fruit wine, S. cerevisiae HJ-2 has the potential of brewing P. fortuneana fruit wine. P. kudriavzevii HJ-6 has a low tolerance to ethanol and is suitable for the production of fermented beverages such as low-alcohol wine or beer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-024-04164-4DOI Listing

Publication Analysis

Top Keywords

fruit wine
12
mass concentration
12
technological characteristics
8
pyracantha fortuneana
8
grow 30℃
8
30℃ alcohol
8
alcohol content
8
concentration 360 mg/l
8
360 mg/l sucrose
8
concentration 250 g/l
8

Similar Publications

Functional Metabolism of Aromatic Precursors in Hanseniaspora: A Source of Natural Bioactive Compounds.

FEMS Yeast Res

September 2025

Enology and Fermentation Biotechnology Area, Department of Science and Food Technology. Faculty of Chemistry, Universidad de la Republica. Montevideo, Uruguay.

Hanseniaspora species are among the most prevalent yeasts found on grapes and other fruits, with a growing role in wine fermentation due to their distinctive metabolic profiles. This review focuses on the functional divergence within the genus, particularly between the fast-evolving fruit clade and the slow-evolving fermentation clade. While species in the fruit clade often exhibit limited fermentation capacity with interesting enzymatic activity, members of the fermentation clade-especially H.

View Article and Find Full Text PDF

Using high- and low-surface flatness fruits of Ziziphus jujuba Mill. cv. "Lingwuchangzao" at different developmental stages as test materials, this study examined the mechanisms underlying variations in fruit appearance and internal quality.

View Article and Find Full Text PDF

Survey of a grapevine microbiome through functional metagenomics.

Food Res Int

November 2025

Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:

Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.

View Article and Find Full Text PDF

Acanthopanax sessiliflorus, belonging to the Araliaceae family, is used as medicinal herbs and dietary supplements, and can be consumed as seasoned vegetables, salads, pickles, functional tea, and wine. Their edible parts (shoots, leaves, fruis, and stems) are considered as a highly valuable food source with health benefits. The comparison of the qualitative and quantitative characteristics of functional compounds in these plant parts is still limited.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF