98%
921
2 minutes
20
The immune defense and the repair function of the pulp tissue serve as the biological foundation of pulpotomy. The precise evaluation of the pulp inflammation extent and determining its reversibility are essential for the success of pulpotomy. The objective of this study was to classify the molecular-level of dental pulp cell physiology and inflammatory state based on the biochemical changes obtained by single-cell Raman spectroscopy. Firstly, we differentiated the growth of HDPCs (human dental pulp cells) under physiological states by employing Raman spectroscopy with multivariate statistical analysis. Raman spectroscopy reflected the biochemical changes at different growth phases, including the lag phase, log phase, and stationary phase. Secondly, we evaluated the optimal concentration and duration of Porphyromonas gingivalis lipopolysaccharide (P.g.LPS) stimulation to establish a six-level inflammation classification model of HDPCs. Thirdly, we performed label-free characterization of biological component changes in cells of different inflammation grades by Raman spectroscopy. As a result, the differences of peaks in the region 600-1800 cm demonstrated the biochemical molecular alterations in the different inflammation grades of HDPCs. As inflammation progresses in steps, protein peaks increased first and then decreased, while lipid and nucleic acid peaks gradually decreased compared to unstimulated cells. However, when the inflammatory stimulation reached grade V, the changes in the biological properties were characterized by a recovery in protein and lipid content, and a decrease in nucleic acid content. We then established the diagnostic model using the Raman spectra of HDPCs in physiological and inflammatory states, which had a prediction accuracy of 100 % and 97.4 %, respectively. Finally, we determined the reversibility threshold of HDPCs at different grades of inflammation. We observed that the inflammation of grade I and II cells had potential reversibility and could be attempted to be retained. In conclusion, Raman spectroscopy combined with multivariate statistical analysis has potential possibility to effectively distinguish the degree of inflammation in the dental pulp, thus providing new tools and perspectives on pulpotomy in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125233 | DOI Listing |
Talanta
September 2025
Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address:
Food spoilage poses a global challenge with far-reaching consequences for public health, economic stability, and environmental sustainability. Conventional analytical methods for spoilage detection though accurate are often cost-prohibitive, labor-intensive, and unsuitable for real-time or field-based monitoring. Microfluidic paper-based analytical devices (μPADs) have emerged as a transformative technology offering rapid, portable, and cost-effective solutions for food quality assessment.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology.
We present multimodal confocal Raman micro-spectroscopy (RS) and tomographic phase microscopy (TPM) for quick morpho-chemical phenotyping of human breast cancer cells (MDA-MB-231). Leveraging the non-perturbative nature of these advanced microscopy techniques, we captured detailed morpho-molecular data from living, label-free cells in their native physiological environment. Human bias-free data processing pipelines were developed to analyze hyperspectral Raman images (spanning Raman modes from 600 cm to 1800 cm, which uniquely characterize a wide range of molecular bonds and subcellular structures), as well as morphological data from three-dimensional refractive index tomograms (providing measurements of cell volume, surface area, footprint, and sphericity at nanometer resolution, alongside dry mass and density).
View Article and Find Full Text PDFJ Vis Exp
August 2025
School of Marine and Atmospheric Science, Stony Brook University.
The protocol presented here enables the quantification of microplastics (MPs) as small as ~1 µm in diameter, accurate identification of polymer types, and estimation of particle volume, critically allowing for the calculation of MP mass. Representative results from samples collected in the Great South Bay (GSB), NY, showed that particles within the 1-6 µm equivalent spherical diameter (ESD) range were the most abundant, with approximately 75% of particles measuring less than 5 µm. Notably, the pre-sieving step failed to yield any particles larger than 60 µm, suggesting that large MPs were rare at the coastal sites sampled.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Dokuz Eylül İzmir Turkey.
Thin films of CuSn Gd S were prepared on soda-lime glass substrates using spin coating in a sulfur-rich environment. We investigated how doping CuSnS with gadolinium (Gd) affected its structural, morphological, and optical properties using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and UV-Vis spectroscopy. XRD showed that all samples had a polycrystalline monoclinic structure, while FE-SEM revealed a mix of spherical and polygon-shaped grains.
View Article and Find Full Text PDF