Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present multimodal confocal Raman micro-spectroscopy (RS) and tomographic phase microscopy (TPM) for quick morpho-chemical phenotyping of human breast cancer cells (MDA-MB-231). Leveraging the non-perturbative nature of these advanced microscopy techniques, we captured detailed morpho-molecular data from living, label-free cells in their native physiological environment. Human bias-free data processing pipelines were developed to analyze hyperspectral Raman images (spanning Raman modes from 600 cm to 1800 cm, which uniquely characterize a wide range of molecular bonds and subcellular structures), as well as morphological data from three-dimensional refractive index tomograms (providing measurements of cell volume, surface area, footprint, and sphericity at nanometer resolution, alongside dry mass and density). By systematically breaking down the rich single-cell details that RS and TPM deliver, we demonstrate, in a quantitative manner, the advantage of such a multimodal microscopy method for phenotyping tumoral breast cancer cells. Our tools also provide further insight into the subcellular information without the use of any labels. Finally, we study and discuss any unique or correlated information that RS- and TPM-derived datasets feature. We believe our tools and quantitative data analysis pipelines can revolutionize phenotyping tasks in biomedical research when in need of a rapid and non-perturbative method on living cells in culture, with the potential for future translation into clinical and diagnostic applications.

Download full-text PDF

Source
http://dx.doi.org/10.3791/68498DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cancer cells
12
living label-free
8
cells
5
multimodal imaging
4
imaging framework
4
framework advance
4
phenotyping
4
advance phenotyping
4
phenotyping living
4

Similar Publications

Purpose: Breast cancer remains a significant public health challenge globally, as well as in India, where it is the most frequently diagnosed cancer in females. Significant disparities in incidence, mortality, and access to health care across India's sociodemographically diverse population highlight the need for increased awareness, policy reform, and research.

Design: This review consolidates data from national cancer registries, global cancer databases, and institutional findings from a tertiary care center to examine the epidemiology, clinical challenges, and management gaps specific to India.

View Article and Find Full Text PDF

ObjectiveTo study the implications of implementing artificial intelligence (AI) as a decision support tool in the Norwegian breast cancer screening program concerning cost-effectiveness and time savings for radiologists.MethodsIn a decision tree model using recent data from AI vendors and the Cancer Registry of Norway, and assuming equal effectiveness of radiologists plus AI compared to standard practice, we simulated costs, effects and radiologist person-years over the next 20 years under different scenarios: 1) Assuming a €1 additional running cost of AI instead of the €3 assumed in the base case, 2) varying the AI-score thresholds for single vs. double readings, 3) varying the consensus and recall rates, and 4) reductions in the interval cancer rate compared to standard practice.

View Article and Find Full Text PDF

Background: Among childhood cancer survivors, germline rare variants in autosomal dominant cancer susceptibility genes (AD CSGs) could increase subsequent neoplasm (SNs) risks, but risks for rarer SNs and by age at onset are not well understood.

Methods: We pooled the Childhood Cancer Survivor Study and St Jude Lifetime Cohort (median follow-up = 29.7 years, range 7.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF

Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.

Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.

View Article and Find Full Text PDF