Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix.

Biomacromolecules

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c00971DOI Listing

Publication Analysis

Top Keywords

supramolecular peptide
8
extracellular matrix
8
hydrogelators functional
8
functional epitopes
8
design applications
4
applications supramolecular
4
peptide hydrogel
4
hydrogel artificial
4
artificial extracellular
4
matrix supramolecular
4

Similar Publications

Maintaining safe and potent drug levels in vivo is challenging. Multidomain peptides assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery. However, their ability to extend release is typically limited by rapid drug diffusion.

View Article and Find Full Text PDF

Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.

View Article and Find Full Text PDF

Background And Aim: Atherosclerosis has an auto-immune component driven by self-reactive T and B cells. Identifying their antigenic drivers may lead to new diagnosis and treatment approaches. Here, we aim to identify immunogenic T cell epitopes derived from atherosclerosis-relevant proteins such as ApoB100 by studying the repertoire of peptides presented by HLA in human plaques.

View Article and Find Full Text PDF

Intestinal organoids are three-dimensional cellular structures that are cultured in laminin-rich Matrigel, yielding organoids with correct, basal-out polarity. Removal of Matrigel results in organoids with reversed, apical-out polarity, demonstrating its vital role. However, Matrigel's composition is ill-defined, and its pathogenic origin poses challenges in reproducibility.

View Article and Find Full Text PDF

Engineering peptide-catecholamine co-assembled nanostructures for tunable fluorescence.

J Colloid Interface Sci

August 2025

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engin

Precise engineering of hydrophobic microenvironments in synthetic peptide-catecholamine co-assemblies remains challenging for tunable fluorescence. Hierarchical nanostructures were constructed through sequence-specific peptide encoding (GYK tripeptide and Ac-IIIGYK-NH₂ hexapeptide) and co-assembly with catecholamines of graded hydrophobicity. Structural dynamics were analyzed via molecular simulations, HPLC, AFM, and spectroscopy.

View Article and Find Full Text PDF