Genome-Wide Identification of the Geranylgeranyl Pyrophosphate Synthase (GGPS) Gene Family Associated with Natural Rubber Synthesis in L. Rodin.

Plants (Basel)

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rodin (TKS) is a recognized alternative source of natural rubber comparable to the rubber tree. The geranylgeranyl pyrophosphate synthase (GGPS) catalyzed the synthesis of geranylgeranyl pyrophosphate (GGPP), which is an important enzyme in the secondary metabolism pathway. In this study, we present the first analysis of the gene family in TKS, where a total of seven family members were identified. Their core motifs, conserved structural domains, gene structures, and cis-acting elements were described. In addition, two phylogenetic trees were constructed based on the Neighbor-Joining and Maximum-Likelihood methods, and the were highly conserved and exhibited good collinearity with the other species. Transcriptome data showed that seven gene members were expressed in all the 12 tissues measured, and , , and 6 were highly expressed in latex, suggesting that they may be associated with natural rubber synthesis. Meanwhile, quantitative real-time PCR (qRT-PCR) showed that the expression levels of the genes were regulated by the ethylene and methyl jasmonate (MeJA) pathways. Subcellular localization results indicated that all the TkGGPS proteins were also located in chloroplasts involved in photosynthesis in plants. This study will provide valuable insights into the selection of candidate genes for molecular breeding and natural rubber biosynthesis in TKS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478434PMC
http://dx.doi.org/10.3390/plants13192788DOI Listing

Publication Analysis

Top Keywords

natural rubber
16
geranylgeranyl pyrophosphate
12
pyrophosphate synthase
8
synthase ggps
8
gene family
8
associated natural
8
rubber synthesis
8
rubber
5
genome-wide identification
4
identification geranylgeranyl
4

Similar Publications

In western North America, 3 pest wireworms in the genus Limonius co-occur on farmland, and the click beetle adult males respond to the same single-component sex attractant, limoniic acid. While divergence in seasonal occurrence may provide a means of separating sexual communication for Limonius canus (LeConte) and Limonius californicus (Mann.), both species overlap temporally with Limonius infuscatus (Mots.

View Article and Find Full Text PDF

Brown root rot, caused by Phellinus noxius, is a major threat to rubber tree cultivation, resulting in substantial economic losses. Traditional control methods, such as root irrigation with fungicides, are labor-intensive, water-consuming, and inefficient, particularly in regions with limited water resources. This study introduces fluorescent mesoporous silica nanoparticles (FL-MSNs) as a novel delivery platform for tebuconazole to target P.

View Article and Find Full Text PDF

Objectives: Cervical cancer is a serious threat to women's life and health and has a high mortality rate. Colposcopy is an important method for early clinical cervical cancer screening, but the traditional vaginal dilator has problems such as discomfort in use and cumbersome operation. For this reason, this study aims to design an intelligent vaginal dilatation system to automate colposcopy and enhance patient comfort.

View Article and Find Full Text PDF

With growing public attention to environmental issues and sustainable development, biodegradable bio-based plastics have attracted widespread interest. This study reveals the chemical-physical synergistic regulation mechanism of biodegradable PLA/PBAT blends through the synergistic modification of epoxidized natural rubber (ENR) and epoxy chain extender (ADR). Interfacial interaction analysis shows that PBAT tends to encapsulate ENR to form aggregates.

View Article and Find Full Text PDF

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF