98%
921
2 minutes
20
Many complex diseases exhibit pronounced sex differences that can affect both the initial risk of developing the disease, as well as clinical disease symptoms, molecular manifestations, disease progression, and the risk of developing comorbidities. Despite this, computational studies of molecular data for complex diseases often treat sex as a confounding variable, aiming to filter out sex-specific effects rather than attempting to interpret them. A more systematic, in-depth exploration of sex-specific disease mechanisms could significantly improve our understanding of pathological and protective processes with sex-dependent profiles. This survey discusses dedicated bioinformatics approaches for the study of molecular sex differences in complex diseases. It highlights that, beyond classical statistical methods, approaches are needed that integrate prior knowledge of relevant hormone signaling interactions, gene regulatory networks, and sex linkage of genes to provide a mechanistic interpretation of sex-dependent alterations in disease. The review examines and compares the advantages, pitfalls and limitations of various conventional statistical and systems-level mechanistic analyses for this purpose, including tailored pathway and network analysis techniques. Overall, this survey highlights the potential of specialized bioinformatics techniques to systematically investigate molecular sex differences in complex diseases, to inform biomarker signature modeling, and to guide more personalized treatment approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471957 | PMC |
http://dx.doi.org/10.1093/bib/bbae499 | DOI Listing |
J Econ Entomol
September 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.
View Article and Find Full Text PDFTurk J Pediatr
September 2025
Division of Allergy and Asthma, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye.
Animal allergens, particularly those from cats, dogs, and horses, are significant risk factors for the development of allergic diseases in childhood. Managing animal allergies requires allergen avoidance and, when this is not feasible, specific immunotherapy. Patient history remains the cornerstone of diagnosis, providing the foundation for diagnostic algorithms.
View Article and Find Full Text PDFTurk J Pediatr
September 2025
Department of Child and Adolescent Psychiatry, Ankara Bilkent City Hospital, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.
Background: Intractable paroxysmal sneezing is a rare and diagnostically challenging condition in children, often mimicking organic diseases. While it is often addressed as psychogenic in the literature, our case presented findings suggestive of a tic disorder, highlighting the need for a broader diagnostic perspective.
Case Presentation: An 11-year-old girl was referred to the child and adolescent psychiatry clinic with a one-year history of persistent and fluctuating sneezing episodes.
ACS Synth Biol
September 2025
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation.
African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.
View Article and Find Full Text PDFAnal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDF