Brain metabolic response to repetitive transcranial magnetic stimulation to lesion network in cervical dystonia.

Brain Stimul

Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; Department of Clinical Neurophysiology, University of Turku, Finland.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: A previous study identified a brain network underlying cervical dystonia (CD) based on causal brain lesions. This network was shown to be abnormal in idiopathic CD and aligned with connections mediating treatment response to deep brain stimulation, suggesting generalizability across etiologies and relevance for treatment. The main nodes of this network were located in the deep cerebellar structures and somatosensory cortex (S1), the latter of which can be easily reached via non-invasive brain stimulation. To date, there are no studies testing brain stimulation to networks identified using lesion network mapping.

Objectives: To assess target engagement by stimulating the S1 and testing the brain's acute metabolic response to repetitive transcranial magnetic stimulation in CD patients and healthy controls.

Methods: Thirteen CD patients and 14 controls received a single session of continuous theta burst (cTBS) and sham to the right S1. Changes in regional brain glucose metabolism were measured using [F]FDG-PET.

Results: cTBS increased metabolism at the stimulation site in CD (P = 0.03) but not in controls (P = 0.15; group difference P = 0.01). In subcortical regions, cTBS increased metabolism in the brainstem in CD only (P = 0.04). The remote activation was positively associated with dystonia severity and efficacy of sensory trick phenomenon in CD patients.

Conclusions: Our results provide further evidence of abnormal sensory system function in CD and show that a single session of S1 cTBS is sufficient to induce measurable changes in brain glucose metabolism. These findings support target engagement, motivating therapeutic trials of cTBS to the S1 in CD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2024.10.004DOI Listing

Publication Analysis

Top Keywords

brain stimulation
12
brain
8
metabolic response
8
response repetitive
8
repetitive transcranial
8
transcranial magnetic
8
magnetic stimulation
8
lesion network
8
cervical dystonia
8
target engagement
8

Similar Publications

Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood.

View Article and Find Full Text PDF

GluN2A-NMDA receptor inhibition disinhibits the prefrontal cortex, reduces forced swim immobility, and impairs sensorimotor gating.

Acta Pharmacol Sin

September 2025

Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Bas

Recent investigations into the rapid antidepressant effects of ketamine, along with studies on schizophrenia-related susceptibility genes, have highlighted the GluN2A subunit as a critical regulator of both emotion and cognition. However, the specific impacts of acute pharmacological inhibition of GluN2A-containing NMDA receptors on brain microcircuits and the subsequent behavioral consequences remain poorly understood. In this study, we first examined the effects of MPX-004, a selective GluN2A NMDA receptor inhibitor, on behavior within the dorsomedial prefrontal cortex (dmPFC).

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is an emerging treatment for otherwise treatment-refractory psychiatric disorders. It can produce remarkable clinical results in expert hands, but has not fared as well in controlled, multisite trials. That difficulty with scaling up arises in part because DBS' mechanisms are poorly understood, meaning that it is difficult to objectively identify patients likely to respond and/or to customize stimulation to match individual patients' needs.

View Article and Find Full Text PDF

Introduction: Although emerging evidence supports the short-term efficacy of transcranial magnetic stimulation (TMS), including repetitive TMS (rTMS) and theta-burst transcranial magnetic stimulation (TBS-TMS), and transcranial direct current stimulation (tDCS) for managing patients with chronic musculoskeletal pain (CMP), their clinical utility in managing CMP remains inconclusive. This uncertainty may arise from methodological limitations, including heterogeneity in treatment parameters such as stimulation targets and dosages. Additionally, safety profiles for these non-invasive brain stimulation interventions in patients with CMP remain insufficiently reported, with limited data on adverse events, cumulative risks and long-term safety outcomes.

View Article and Find Full Text PDF

Neural oscillations in beta (13-30 Hz) and gamma (>30 Hz) frequency bands index a variety of sensorimotor and cognitive processes. To compare two rehabilitation regimens for chronic stroke patients with a hemiparetic hand, we randomly assigned them to either music-supported therapy or physiotherapy for 10 weeks. Previously, we reported the music group's improved motor speed, mood, well-being, and rhythm perception.

View Article and Find Full Text PDF