98%
921
2 minutes
20
Chilodonella, a parasitic ciliate that infects both cold water and warm water fish, can impede the growth of juvenile fish and cause considerable economic losses globally to freshwater aquaculture. In this study, the parasite was collected from both the gills and zygotes of largemouth bass (Micropterus salmoides). Isolated from diseased fish, the parasites were identified as Chilodonella uncinata based on morphological features and genetical diagnostic characterization using the partial small subunit ribosomal RNA gene. To develop an effective approach to treat chilodonellosis caused by C. uncinata in largemouth bass farming, we first developed an in vivo culture model for propagating C. uncinate and thus could use for morphological characterization, molecular analyses and antiparasitic drug screening. Curcumin was successfully identified as an efficacious anti-C. uncinata agent from 26 phytochemical compounds. When administered at a concentration of 6 mg/L, curcumin not only completely cured infected largemouth bass but also shielded uninfected fish from C. uncinata infections. The 24 h median effective concentration (EC) of curcumin against C. uncinata was 3.098 mg/L. Remarkably, the 96 h median lethal concentration (LC) of curcumin against largemouth bass was determined to be 17.143 mg/L, approximately 5.533 times higher than EC. The mechanism of action of curcumin was investigated by the cellular thermal shift assay, demonstrating that tubulin alpha chain was the binding target for curcumin. Moreover, SEM investigations further provided morphological evidence suggesting that curcumin induces parasite demise by disrupting the parasite's body surface and subsequently infiltrating its interior. These findings collectively emphasize the potential of curcumin as a safe and effective therapeutic agent for controlling C. uncinata in aquaculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2024.109961 | DOI Listing |
J Fish Biol
September 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
Citrobacter freundii, a common zoonotic pathogen affecting humans, livestock and fish, is recognized for its substantial impact on largemouth bass (Micropterus salmoides) mortality. However, the mechanisms of C. freundii infection in largemouth bass remain poorly understood.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
Clostridium butyricum has gained attention as a probiotic in aquaculture due to its ability to improve growth, gut health, and immune function. However, most strains currently used are derived from non-aquatic sources, which may limit their colonization and efficacy in fish. In this study, a novel strain, C.
View Article and Find Full Text PDFElife
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
IgM emerged in jawed vertebrates 500 Mya and remains the most evolutionarily conserved antibody class. However, despite extensive studies on IgM as an ancient antiviral weapon in warm-blooded vertebrates, its role and mechanisms in combating viral infections in early vertebrates remain poorly understood. Here, significant virus-specific sIgM titers are generated in the serum and gut mucus of a teleost fish (largemouth bass) that survive infection, and fish lacking sIgM were more susceptible to viral infection.
View Article and Find Full Text PDFJ Fish Dis
September 2025
College of Fisheries, Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, China.
Aeromonas hydrophila can cause disease in various aquatic animals, but there exist no effective alternatives to control its outbreak. In this study, diseased largemouth bass were collected from the breeding farm Lake Dahong (Chongqing, China), a strain SK-2 was isolated and identified as A. hydrophila.
View Article and Find Full Text PDFViruses
July 2025
Washington Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Washington State University, 1940 Olympia Avenue, Pullman, WA 99164, USA.
We performed a diagnostic disease investigation on a wild smallmouth bass () with skin ulcers that was collected from Lake Oahe, South Dakota, following reports from anglers of multiple fish with similar lesions. Gross and histologic lesions of ulcerative dermatitis, myositis, and lymphocytolysis within the spleen and kidneys were consistent with largemouth bass virus (LMBV) infection. LMBV was detected by conventional PCR in samples of a skin ulcer, and the complete genome sequence of the LMBV (99,184 bp) was determined from a virus isolate obtained from a homogenized skin sample.
View Article and Find Full Text PDF