Unveiling the Significance of tert-Butoxides in Transition Metal-Free Cross-Coupling Reactions.

Top Curr Chem (Cham)

Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, India.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The astounding reactivity of tert-butoxides in transition metal-free coupling reactions is driving the scientific community towards a new era of environmental friendly, as well as cost-effective, transformation strategies. Transition metal-catalyzed coupling reactions generate hazardous wastes and require harsh reaction conditions, mostly at elevated temperature, which increases not only costs but also environmental concerns regarding the methodology. Tert-butoxide-catalyzed/mediated coupling reactions have several advantages and potential applications. They can form carbon-carbon, carbon-heteroatom, and heteroatom-heteroatom bonds under mild reaction conditions. Mechanistic insights into these reactions include both ionic and radical pathways, with the fate of the intermediates depending on the reaction conditions and/or additives used in the reactions. Among all of the known tert-butoxides, potassium tert-butoxide has pronounced applications in transition metal-free coupling reactions as compared to other tert-butoxides, such as sodium and lithium tert-butoxides, because of the higher electropositivity of potassium compared to sodium and lithium. Moreover, potassium tert-butoxide can act as a source of base, nucleophile and single electron donors in various important transformations. In this review, we provide an extensive overview and complete compilation of transition metal-free cross-coupling reactions catalyzed/promoted by tert-butoxides during the past 10 years.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s41061-024-00478-5DOI Listing

Publication Analysis

Top Keywords

transition metal-free
16
coupling reactions
16
reaction conditions
12
tert-butoxides transition
8
metal-free cross-coupling
8
reactions
8
cross-coupling reactions
8
metal-free coupling
8
potassium tert-butoxide
8
sodium lithium
8

Similar Publications

Convergent Paired Electrolysis Enables Electrochemical Halogen-Atom Transfer-Mediated Alkyl Radical Cross-Coupling.

J Am Chem Soc

September 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

The direct cross-coupling of unactivated alkyl halides with aryl or heteroaryl partners remains a fundamental challenge in synthetic chemistry due to their inertness and propensity for side reactions. Herein, we report a transition-metal-free electrochemical halogen-atom transfer strategy that enables efficient alkyl radical cross-coupling via convergent paired electrolysis. In this system, anodically generated α-aminoalkyl radicals mediate the activation of alkyl iodides, while aryl/heteroaryl aldehydes or nitriles undergo cathodic reduction to afford persistent ketyl radical anions or aryl radical anions.

View Article and Find Full Text PDF

We demonstrate a direct synthesis of coumarin-3 derivatives from aryl alkynoates and hydrazines in visible light, photocatalyzed by rose bengal. The method is facile, transition-metal-free, versatile, and furnishes various 3-functionalized coumarins such as ester, acyl, aryl, carbamoyl, and sulfonyl in moderate to good yields, with the respective hydrazine reagent serving as the radical precursor. Two anti-TB molecules, and , were synthesized using this method.

View Article and Find Full Text PDF

A transition-metal-free ring opening of bicyclo[1.1.0]butanes (BCBs) using hydroperoxides as nucleophiles in hexafluoroisopropanol (HFIP) resulting in the diastereoselective synthesis of peroxycyclobutanes under mild conditions with a broad scope is demonstrated.

View Article and Find Full Text PDF

Upgrading methane to value-added chemicals is significant but still challenging. Well-designed catalysts are required to activate methane. Extensive efforts have been dedicated to the catalytic conversion of methane over transition-metal-containing catalysts.

View Article and Find Full Text PDF

Visible-Light-Promoted Hydroxyalkylation of Heterocycles with α-Oxocarboxylic Acids.

J Org Chem

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

We herein report the Minisci-type redox-neutral decarboxylative hydroxyalkylation of heteroarenes under photocatalyst- and transition-metal-free conditions. This methodology tolerates various functional groups that can be subsequently elaborated. Upon absorption of photons, the excited state of the α-oxocarboxylic acid forms an acyl radical, which adds to the protonated heteroarene to give the desired product after a spin center shift (SCS), reduction, and deprotonation.

View Article and Find Full Text PDF