98%
921
2 minutes
20
Owing to high pixel density and brightness, gallium nitride (GaN) based micro-light-emitting diodes (Micro-LEDs) are considered revolutionary display technology and have important application prospects in the fields of micro-display and virtual display. However, Micro-LEDs with pixel sizes smaller than 10 μm still encounter technical challenges such as sidewall damage and limited light extraction efficiency, resulting in reduced luminous efficiency and severe brightness non-uniformity. Here, we reported high-brightness green Micro-displays with a 5 μm pixel utilizing high-quality GaN-on-Si epilayers. Four-inch wafer-scale uniform green GaN epilayer is first grown on silicon substrate, which possesses a low dislocation density of 5.25 × 10 cm, small wafer bowing of 16.7 μm, and high wavelength uniformity (standard deviation STDEV < 1 nm), scalable to 6-inch sizes. Based on the high-quality GaN epilayers, green Micro-LEDs with 5 μm pixel sizes are designed with vertical non-alignment bonding technology. An atomic sidewall passivation method combined with wet treatment successfully addressed the Micro-LED sidewall damages and steadily produced nano-scale surface textures on the pixel top, which unlocked the internal quantum efficiency of the high-quality green GaN-on-Si epi-wafer. Ultra-high brightness exceeding 10 cd/m (nits) is thus achieved in the green Micro-LEDs, marking the highest reported results. Furthermore, integration of Micro-LEDs with Si-based CMOS circuits enables the realization of green Micro-LED displays with resolution up to 1080 × 780, realizing high-definition playback of movies and images. This work lays the foundation for the mass production of high-brightness Micro-LED displays on large-size GaN-on-Si epi-wafers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464674 | PMC |
http://dx.doi.org/10.1038/s41377-024-01639-3 | DOI Listing |
Nano Lett
September 2025
Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.
View Article and Find Full Text PDFNanoscale
September 2025
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
With the progress of study, MoS has been proven to show excellent properties in electronics and optoelectronics, which promotes the fabrication of future novel integrated circuits and photodetectors. However, highly uniform wafer-scale growth is still in its early stage, especially regarding how to control the precursor and its distribution. Herein, we propose a new method, spraying the Mo precursor, which is proven to fabricate highly uniform 2-inch monolayer MoS wafers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
Department of Chemistry, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
Two-dimensional (2D) boron-carbon-nitrogen (BCN) nanostructures combine the characteristics of graphene and hexagonal boron nitride (h-BN) and offer outstanding optical and electronic properties. In this study, we directly synthesized high-purity BCN nanoflakes via chemical vapor deposition using nickelocene as a remote floating catalyst, achieving uniform deposition regardless of substrate material or morphology, without contaminating the substrate or film with residual metal catalyst. In the gas phase, the nickelocene catalyst sublimates and decomposes, facilitating the decomposition of the reactant gases and enabling the stable vertical growth of BCN nanoflakes.
View Article and Find Full Text PDFSmall
August 2025
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
The rapid advancement of artificial intelligence has underscored the limitations of traditional von Neumann architecture, particularly their inherent "memory wall" and "power wall" bottlenecks, which hinder efficient computing. Neuromorphic computing, mimicking the brain's parallel computing paradigm, offers a promising solution by enabling high energy efficiency and fast computing speed, making it a key approach for overcoming these computing bottlenecks in the post-Moore era. Two-dimensional (2D) materials have emerged as exceptional candidates for next-generation neuromorphic devices, owing to their atomic-scale thickness, tunable physical properties, and superior integration compatibility.
View Article and Find Full Text PDF