Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Malaria is a major public health concern, causing significant morbidity and mortality globally. Monitoring the local population density and diversity of the vectors transmitting malaria is critical to implementing targeted control strategies. However, the current manual identification of mosquitoes is a time-consuming and intensive task, posing challenges in low-resource areas like sub-Saharan Africa; in addition, existing automated identification methods lack scalability, mobile deployability, and field-test validity. To address these bottlenecks, a mosquito image database with fresh wild-caught specimens using basic smartphones is introduced, and we present a novel CNN-based architecture, VectorBrain, designed for identifying the species, sex, and abdomen status of a mosquito concurrently while being efficient and lightweight in computation and size. Overall, our proposed approach achieves 94.44±2% accuracy with a macro-averaged F1 score of 94.10±2% for the species classification, 97.66±1% accuracy with a macro-averaged F1 score of 96.17±1% for the sex classification, and 82.20±3.1% accuracy with a macro-averaged F1 score of 81.17±3% for the abdominal status classification. VectorBrain running on local mobile devices, paired with a low-cost handheld imaging tool, is promising in transforming the mosquito vector surveillance programs by reducing the burden of expertise required and facilitating timely response based on accurate monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464746PMC
http://dx.doi.org/10.1038/s41598-024-71856-8DOI Listing

Publication Analysis

Top Keywords

accuracy macro-averaged
12
macro-averaged score
12
vector surveillance
8
species sex
8
sex abdomen
8
abdomen status
8
transforming malaria
4
malaria vector
4
surveillance vectorbrain
4
vectorbrain novel
4

Similar Publications

This study presents a novel privacy-preserving deep learning framework for accurately classifying fine-grained hygiene and water-usage events in restroom environments. Leveraging a comprehensive, curated dataset comprising approximately 460 min of stereo audio recordings from five acoustically diverse bathrooms, our method robustly identifies 11 distinct events, including nuanced variations in faucet counts and flow rates, toilet flushing, and handwashing activities. Stereo audio inputs were transformed into triple-channel Mel spectrograms using an adaptive one-dimensional convolutional neural network (1D-CNN), dynamically synthesizing spatial cues to enhance discriminative power.

View Article and Find Full Text PDF

Aims: Adenocarcinoma of the uterine cervix exhibits substantial biological and histological heterogeneity, with subtype-specific differences in prognosis and therapeutic response. Conventional classification-based on histopathology, immunohistochemistry, and molecular testing-remains subjective, labor-intensive, and challenging to standardize. This study introduces EdgeNeXt-SEDP, a lightweight deep-learning framework for automated differentiation of HPV-associated (HPVA) and non-HPV-associated (NHPVA) subtypes from histopathological whole-slide images (WSIs).

View Article and Find Full Text PDF

Ongoing changes in the distribution and abundance of several tick species of medical relevance in Canada have prompted the development of the eTick platform-an image-based crowd-sourcing public surveillance tool for Canada enabling rapid tick species identification by trained personnel, and public health guidance based on tick species and province of residence of the submitter. Considering that more than 100,000 images from over 73,500 identified records representing 25 tick species have been submitted to eTick since the public launch in 2018, a partial automation of the image processing workflow could save substantial human resources, especially as submission numbers have been steadily increasing since 2021. In this study, we evaluate an end-to-end artificial intelligence (AI) pipeline to support tick identification from eTick user-submitted images, characterized by heterogeneous quality and uncontrolled acquisition conditions.

View Article and Find Full Text PDF

Sleep staging is essential for evaluating sleep quality, diagnosing disorders, and creating personalized treatment plans. The convolutional and bidirectional long short-term memory hybrid neural network (CNN-BiLSTM) has shown promise in automated sleep staging from electroencephalogram (EEG) signals. However, prior studies often overlook expert-derived manual features, relying solely on deep neural networks for automatic feature extraction.

View Article and Find Full Text PDF

Background: Surgery is a well-established treatment for drug-resistant epilepsy, but outcomes are often suboptimal, especially when no lesion is visible on preoperative imaging. A major challenge in determining the seizure's origin and spread is interpreting electroencephalogram (EEG) data. Accurately tracing the seizure's signal trajectory, given the brain's complex behavior, remains a crucial hurdle.

View Article and Find Full Text PDF