98%
921
2 minutes
20
Background: Coronavirus disease 2019 (COVID-19) has led to severe pneumonia and mortality worldwide, however, clinical outcomes in end-stage renal disease patients remain unclear. This study evaluates the prognostic value of chest computed tomography (CT) findings in predicting COVID-19-related outcomes in prevalent hemodialysis patients.
Methods: We retrospectively analyzed 326 prevalent hemodialysis patients diagnosed with COVID-19 who underwent chest CT scans. Characteristics assessed included pleural effusion, lung involvement volume, nodular consolidation, patchy infiltration, and ground-glass opacity. Artificial intelligence (AI)-assisted CT analysis quantified lung involvement. The primary endpoint was in-hospital mortality. Clinical data were collected, and logistic regression analysis assessed the association between CT findings and mortality.
Results: The mean age of the patients was 66.7 ± 12.6 years, 61.0% were male, and 58.6% were diabetic. Chest CT showed that 18.1% had lung involvement >10%, 32.5% had pleural effusion, 68.7% had nodular consolidation, 57.1% had patchy infiltration, and 58.0% had ground-glass opacity. Seventy patients (21.5%) died. Multivariate logistic regression analysis identified lung involvement >2.7% (odds ratio [OR], 16.70; 95% confidence interval [CI], 4.35-65.63), pleural effusion (OR, 3.28; 95% CI, 1.15-9.35), nodular consolidation (OR, 4.08; 95% CI, 1.12-14.82), and patchy infiltration (OR, 3.75; 95% CI, 1.17-12.03) as significant mortality risk factors.
Conclusion: Chest CT findings, including lung involvement >2.7% and the presence of pleural effusion, nodular consolidation, and patchy infiltrates, significantly indicated mortality in COVID-19 pneumonia among prevalent hemodialysis patients. AI-assisted CT analysis proved useful in assessing lung involvement extent, showing that even minimal lung involvement can be associated with increased mortality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.23876/j.krcp.24.079 | DOI Listing |
Pulm Ther
September 2025
Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Straße 173, 55216, Ingelheim am Rhein, Germany.
Introduction: The modification of an inhaler's air flow resistance influences a patient's inhalation flow profile, thereby affecting the exit velocity of an aerosol leaving the Respimat® mouthpiece. A slower inhalation maneuver results in reduced plume velocity and thus a decreased oropharyngeal deposition due to reduced impaction. This could not only lead to fewer unwanted side effects associated with inhaled therapies, but also enhance lung deposition.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Inner Mongolia Medical University Affiliated Hospital, Hohhot, 010030, Inner Mongolia, China.
Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.
Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.
Br J Cancer
September 2025
Department of Genetics, Institut Curie, PSL Research University, Paris, France.
Background: Identifying molecular alterations specific to advanced lung adenocarcinomas could provide insights into tumour progression and dissemination mechanisms.
Method: We analysed tumour samples, either from locoregional lesions or distant metastases, from patients with advanced lung adenocarcinoma from the SAFIR02-Lung trial by targeted sequencing of 45 cancer genes and comparative genomic hybridisation array and compared them to early tumours samples from The Cancer Genome Atlas.
Results: Differences in copy-number alterations frequencies suggest the involvement in tumour progression of LAMB3, TNN/KIAA0040/TNR, KRAS, DAB2, MYC, EPHA3 and VIPR2, and in metastatic dissemination of AREG, ZNF503, PAX8, MMP13, JAM3, and MTURN.
Biol Pharm Bull
September 2025
Department of Intensive Care Unit, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310007, China.
Ferroptosis is involved in the progression of sepsis-induced acute lung injury (ALI). Kaempferol is a flavonoid compound that can protect against ALI. 5-Methylcytosine (m5C) is involved in the pathogenesis of sepsis.
View Article and Find Full Text PDF