98%
921
2 minutes
20
Tissue-resident natural killer (trNK) cells are present in the human lung, yet their metabolic function is unknown. NK cell effector and metabolic function are intrinsically linked therefore targeting metabolism presents therapeutic potential in supporting NK cell effector function. This study identifies trNK cells in human bronchoalveolar lavage fluid (BALF) and reveals their distinct metabolic function. To assess the differential phenotype and metabolism of NK cells in the lung, human BALF, and peripheral blood were evaluated by flow cytometry and SCENITH. Published RNA-sequencing datasets of human lung and blood NK cells were repurposed to determine their differential gene expression. We identified CD49aCD69CD103CD56CD16 trNK cells in human BALF samples and metabolic profiling revealed that lung CD56CD16 NK cells' glycolytic capacity and dependence on glucose is significantly higher than matched peripheral blood counterparts. This high glycolytic capacity and glucose dependence was attributed to the trNK cell subset which supports the existing evidence that they have an enhanced ability to respond in the lung.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494342 | PMC |
http://dx.doi.org/10.1073/pnas.2412489121 | DOI Listing |
J Cancer Res Clin Oncol
September 2025
Inner Mongolia Medical University Affiliated Hospital, Hohhot, 010030, Inner Mongolia, China.
Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.
Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.
Mol Syst Biol
September 2025
Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.
View Article and Find Full Text PDFNature
September 2025
Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.
View Article and Find Full Text PDFNature
September 2025
Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.
View Article and Find Full Text PDF