98%
921
2 minutes
20
Although previous studies suggest that Piezo2 regulates chronic pain in the orofacial area, few studies have reported the direct evidence of Piezo2's involvement in inflammatory and neuropathic pain in the orofacial region. In this study, we used male Sprague Dawley rats to investigate the role of the Piezo2 pathway in the development of inflammatory and neuropathic pain. The present study used interleukin (IL)-1-induced pronociception as an inflammatory pain model. Subcutaneous injection of IL-1 produced significant mechanical allodynia and thermal hyperalgesia. Subcutaneous injection of a Piezo2 inhibitor significantly blocked mechanical allodynia and thermal hyperalgesia induced by subcutaneously injected IL-1. Furthermore, the present study also used a neuropathic pain model caused by the misplacement of a dental implant, leading to notable mechanical allodynia as a consequence of inferior alveolar nerve injury. Western blot analysis revealed increased levels of Piezo2 in the trigeminal ganglion and the trigeminal subnucleus caudalis after inferior alveolar nerve injury. Furthermore, subcutaneous and intracisternal injections of a Piezo2 inhibitor blocked neuropathic mechanical allodynia. These results suggest that the Piezo2 pathway plays a critical role in the development of inflammatory and neuropathic pain in the orofacial area. Therefore, blocking the Piezo2 pathway could be the foundation for developing new therapeutic strategies to treat orofacial pain conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452243 | PMC |
http://dx.doi.org/10.1155/2024/9179928 | DOI Listing |
Neurol Med Chir (Tokyo)
September 2025
Department of Neurosurgery, Tokyo Medical University.
Adhesive materials are widely used in microvascular decompression for treating neurovascular compression syndromes. They play an important role in the critical step of vessel fixation. Recently, completely autologous fibrin glue produced solely from a patient's own plasma was developed.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Department of Pharmacology, Institute of Biological Sciences, UFMG, Belo Horizonte, MG, Brazil. Electronic address:
Prog Neurobiol
September 2025
Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea; Biomedical Science Institute, Kyung Hee University, Seoul, Republi
Lumbar spinal stenosis (LSS) is one of the most common spinal disorders in elderly people and is often accompanied by neuropathic pain. Although our previous studies have demonstrated that infiltrating macrophage contribute to chronic neuropathic pain in LSS rat model, the molecular mechanisms underlying macrophage activation and infiltration have not been fully elucidated. In this study, we examined the critical role of platelet-derived growth factor receptor (PDGFR) signaling pathway in neuropathic pain associated with macrophage infiltration and activation in LSS rats.
View Article and Find Full Text PDFNeuropharmacology
September 2025
Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India. Electronic address:
Neuroinflammation is vital in vincristine-induced peripheral neuropathy (VIPN). Locally infiltrated macrophages polarize to pro-inflammatory M1-type, release inflammatory cytokines, and contribute to neuropathic pain. Histone deacetylase 3 (HDAC3) regulates macrophage polarization.
View Article and Find Full Text PDFNeurol Ther
September 2025
Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China.
Central post-stroke pain (CPSP) is an intractable neuropathic pain syndrome. Dual-target deep brain stimulation (DBS), which integrates sensory thalamic modulation and endogenous analgesic pathways, has emerged as a potential intervention; however, clinical evidence remains scarce. We report a 54-year-old woman who developed right-sided limb paresthesia progressing to persistent right hemibody pain following a left thalamic hemorrhage.
View Article and Find Full Text PDF