98%
921
2 minutes
20
Precise deformable image registration of multi-parametric MRI sequences is necessary for radiologists in order to identify abnormalities and diagnose diseases, such as prostate cancer and lymphoma. Despite recent advances in unsupervised learning-based registration, volumetric medical image registration that requires considering the variety of data distributions is still challenging. To address the problem of multi-parametric MRI sequence data registration, we propose an unsupervised domain-transported registration method, called OTMorph by employing neural optimal transport that learns an optimal transport plan to map different data distributions. We have designed a novel framework composed of a transport module and a registration module: the former transports data distribution from the moving source domain to the fixed target domain, and the latter takes the transported data and provides the deformed moving volume that is aligned with the fixed volume. Through end-to-end learning, our proposed method can effectively learn deformable registration for the volumes in different distributions. Experimental results with abdominal multi-parametric MRI sequence data show that our method has superior performance over around 67-85% in deforming the MRI volumes compared to the existing learning-based methods. Our method is generic in nature and can be used to register inter-/intra-modality images by mapping the different data distributions in network training.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450653 | PMC |
http://dx.doi.org/10.1117/12.3006289 | DOI Listing |
JAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDFAbdom Radiol (NY)
September 2025
Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.
Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.
Front Oncol
August 2025
Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China.
Purpose: To develop a magnetic resonance imaging (MRI)-based radiomics nomogram to predict lymphovascular space invasion (LVSI) status in patients with early-stage cervical adenocarcinoma (CAC).
Methods: Clinicopathological and MRI data from 310 patients with histopathologically confirmed early-stage CAC were retrospectively analyzed. Patients were divided into training (n = 186) and validation (n = 124) cohorts.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008.
Objectives: Patients with connective tissue diseases (CTD) have a high incidence of cardiac involvement, which often presents insidiously and can progress rapidly, making it one of the leading causes of death. Multiparametric cardiovascular magnetic resonance (CMR) provides a comprehensive quantitative evaluation of myocardial injury and is emerging as a valuable tool for detecting cardiac involvement in CTD. This study aims to investigate the correlations between CMR features and serological biomarkers in CTD patients, assess their potential clinical value, and further explore the impact of pre-CMR immunotherapy intensity on CMR-specific parameters, thereby evaluating the role of CMR in the early diagnosis of CTD-related cardiac involvement.
View Article and Find Full Text PDFAcad Radiol
September 2025
Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China (H.S., Q.W., S.F., H.W.). Electronic address:
Rationale And Objectives: This study systematically evaluates the diagnostic performance of artificial intelligence (AI)-driven and conventional radiomics models in detecting muscle-invasive bladder cancer (MIBC) through meta-analytical approaches. Furthermore, it investigates their potential synergistic value with the Vesical Imaging-Reporting and Data System (VI-RADS) and assesses clinical translation prospects.
Methods: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.