Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While next generation sequencing has expanded the scientific understanding of Inborn Errors of Immunity (IEI), the clinical use and re-use of exome sequencing is still emerging. We revisited clinical exome data from 1300 IEI patients using an updated in silico IEI gene panel. Variants were classified and curated through expert review. The molecular diagnostic yield after standard exome analysis was 11.8 %. Through systematic reanalysis, we identified variants of interest in 5.2 % of undiagnosed patients, with 76.7 % being (candidate) disease-causing, providing a (candidate) diagnosis in 15.2 % of our cohort. We find a 1.7 percentage point increase in conclusive molecular diagnoses. We find a high degree of actionability in patients with a genetic diagnosis (76.4 %). Despite the modest absolute diagnostic gain, these data support the benefit of iterative exome reanalysis in IEI patients, conveying the notion that our current understanding of genes and variants involved in IEI is by far not saturated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2024.110375DOI Listing

Publication Analysis

Top Keywords

clinical exome
8
exome sequencing
8
inborn errors
8
errors immunity
8
diagnostic yield
8
systematic reanalysis
8
iei patients
8
patients
5
iei
5
sequencing data
4

Similar Publications

Bioinformatics analysis of a geneframeshift mutation in a patient with Dent disease.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Nephropathy and Rheumatology, Third Xiangya Hospital, Central South University, Changsha 410013.

Dent disease is a rare X-linked recessive inherited renal tubular disorder characterized by low molecular weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, and other clinical features, and can lead to progressive renal failure. It is primarily caused by mutations in the gene. This article reports the case of a 10-year-old male patient of Chinese descent who was incidentally found to have asymptomatic proteinuria during a routine health examination.

View Article and Find Full Text PDF

Clinical, biochemical, and genetic characterization of Lebanese patients with chronic granulomatous disease due to NCF2 pathogenic variants.

Clin Immunol

September 2025

Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center

Chronic Granulomatous Disease (CGD) is caused by mutations in the NADPH oxidase complex that impair the ability of phagocytes to eliminate injested pathogens. As a result, patients with CGD suffer from recurrent infections and chronic inflammation. We report the clinical, biochemical, and genetic basis of the disease in 17 CGD patients from Lebanon.

View Article and Find Full Text PDF

Performance comparison of germline variant calling tools in sporadic disease cohorts.

Mol Genet Genomics

September 2025

Human Phenome Institute, MOE Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.

Accurate variant calling is essential for next-generation sequencing (NGS)-based diagnosis of rare diseases, yet most benchmarking studies have focused on standard cell lines or trio-based samples, with limited relevance to sporadic cases. Here, we systematically compared the performance of DeepVariant and GATK HaplotypeCaller in two Chinese cohorts of patients with sporadic epilepsy (EP) and autism spectrum disorder (ASD). DeepVariant exhibited higher precision and sensitivity in detecting single nucleotide variants (SNVs), while GATK showed a distinct advantage in identifying rare variants, which are often key to understanding the genetic basis of rare diseases.

View Article and Find Full Text PDF

Genetic burden and multidimensional predictors in prenatal diagnosis of fetal congenital diaphragmatic hernia.

Hum Genet

September 2025

Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China.

This study aims to assess the genetic burden of fetal congenital diaphragmatic hernia (CDH) and identify prenatal, perinatal, and postnatal predictors to improve early diagnosis, monitoring, and intervention. This study included 130 CDH fetuses who underwent invasive prenatal diagnosis, with fetal prognosis evaluated using imaging parameters such as observed-to-expected lung-to-head ratio (o/e LHR), observed-to-expected total lung volume (o/e TLV), and percent predicted lung volume (PPLV). Clinical outcomes included neonatal outcomes, extracorporeal membrane oxygenation (ECMO) requirement, and post-neonatal prognosis.

View Article and Find Full Text PDF

Mitochondrial Complex V Deficiency Caused by a Homozygous Splice Variant in ATP5PO.

Am J Med Genet A

September 2025

Division of Clinical and Metabolic Genetics, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.

Most complex V subunits are nuclear encoded and so far, were not found in association with recognized Mendelian disorders. ATP5PO is a candidate gene for complex V mitochondrial disease. It encodes the oligomycin sensitivity-conferring protein (OSCP), an essential component of the "stalk" region that links the F1 and F0 domains of the ATP synthase complex.

View Article and Find Full Text PDF