Background: Short-read genome sequencing (sr-GS) affords efficient and accurate characterisation of apparently balanced chromosomal rearrangement (ABCR) breakpoints except in 9%-11% of cases that remain undetectable.
Methods: Among 117 ABCR that we studied in patients with abnormal phenotype, 14 (11.9%) could not be detected by our current strategy including sr-GS, alignment against the GRCh38 reference genome and structural variant (SV) detection using Breakdancer V.
Breast Cancer Res Treat
May 2025
Purpose: Several variants in DNA damage response (DDR) genes increase the probability to develop breast cancer and show enrichment in Northern Finland. Here, the population prevalence and risk estimations were refined for sixteen recurrent pathogenic/likely pathogenic DDR gene variants.
Methods: Variant genotyping was performed in 2343 unselected Northern Finnish breast cancer cases and 4607 cancer-free controls, and tumor features and family history of cancer for the carriers were examined.
Micropapillary colorectal adenocarcinoma is a morphologic subtype of colorectal cancer (CRC) with insufficiently characterized prognostic significance and biological features. We analyzed the histopathological, immunological, and prognostic features of micropapillary adenocarcinoma in two independent CRC cohorts (N = 1,876). We found that micropapillary adenocarcinomas accounted for 4.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2025
Myelodysplastic neoplasia with complex karyotype (CK-MDS) poses significant clinical challenges and is associated with poor survival. Detection of structural variants (SVs) is crucial for diagnosis, prognostication, and treatment decision-making in MDS. However, the current standard-of-care (SOC) cytogenetic testing, relying on karyotyping, often yields ambiguous results in cases with CK.
View Article and Find Full Text PDFWhile next generation sequencing has expanded the scientific understanding of Inborn Errors of Immunity (IEI), the clinical use and re-use of exome sequencing is still emerging. We revisited clinical exome data from 1300 IEI patients using an updated in silico IEI gene panel. Variants were classified and curated through expert review.
View Article and Find Full Text PDFMutations in proteasome β-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome β2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash.
View Article and Find Full Text PDFOptical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.
View Article and Find Full Text PDFCopy number variants (CNVs) are a major source of genetic variation and can disrupt genes or affect gene dosage. They are known to be causal or underlie predisposition to various diseases. However, the role of CNVs in inherited breast cancer susceptibility has not been thoroughly investigated.
View Article and Find Full Text PDFSplit-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci.
View Article and Find Full Text PDFThe fluorescence in situ hybridization (FISH) technique plays an important role in the risk stratification and clinical management of patients with chronic lymphocytic leukemia (CLL). For genome-wide analysis, FISH needs to be complemented with other cytogenetic methods, including karyotyping and/or chromosomal microarrays. However, this is often not feasible in a diagnostic setup.
View Article and Find Full Text PDFCHEK2 is a well-established breast cancer susceptibility gene. The most frequent pathogenic CHEK2 variant is 1100delC, a loss-of-function mutation conferring 2-fold risk for breast cancer. This gene also harbors other rare variants encountered in the clinical gene panels for hereditary cancer.
View Article and Find Full Text PDFNovel treatments in chronic lymphocytic leukemia (CLL) have generated interest regarding the clinical impact of genomic complexity, currently assessed by chromosome banding analysis (CBA) and chromosomal microarray analysis (CMA). Optical genome mapping (OGM), a novel technique based on imaging of long DNA molecules labeled at specific sites, allows the identification of multiple cytogenetic abnormalities in a single test. We aimed to determine whether OGM is a suitable alternative to cytogenomic assessment in CLL, especially focused on genomic complexity.
View Article and Find Full Text PDFTINF2 is a critical subunit of the shelterin complex, which protects and maintains the length of telomeres. Pathogenic missense and truncating TINF2 mutations are causative for dyskeratosis congenita (DC), a rare, dominantly inherited bone marrow failure syndrome characterized by mucocutaneous abnormalities and cancer predisposition. Recent reports indicate that specific TINF2 truncating mutations act as high penetrance cancer predisposition alleles outside DC context, including breast cancer in their tumor spectrum.
View Article and Find Full Text PDFStudies of de novo mutation (DNM) have typically excluded some of the most repetitive and complex regions of the genome because these regions cannot be unambiguously mapped with short-read sequencing data. To better understand the genome-wide pattern of DNM, we generated long-read sequence data from an autism parent-child quad with an affected female where no pathogenic variant had been discovered in short-read Illumina sequence data. We deeply sequenced all four individuals by using three sequencing platforms (Illumina, Oxford Nanopore, and Pacific Biosciences) and three complementary technologies (Strand-seq, optical mapping, and 10X Genomics).
View Article and Find Full Text PDFThe lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical genome mapping and long-read sequencing, we aimed to identify the pathogenic variant in a large family with X-linked choroideremia.
View Article and Find Full Text PDFPathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype-phenotype correlation, a significant part of cases remains genetically unresolved.
View Article and Find Full Text PDFSomatic structural variants (SVs) are important drivers of cancer development and progression. In a diagnostic set-up, especially for hematological malignancies, the comprehensive analysis of all SVs in a given sample still requires a combination of cytogenetic techniques, including karyotyping, FISH, and CNV microarrays. We hypothesize that the combination of these classical approaches could be replaced by optical genome mapping (OGM).
View Article and Find Full Text PDFIn a subset of pediatric cancers, a germline cancer predisposition is highly suspected based on clinical and pathological findings, but genetic evidence is lacking, which hampers genetic counseling and predictive testing in the families involved. We describe a family with two siblings born from healthy parents who were both neonatally diagnosed with atypical teratoid rhabdoid tumor (ATRT). This rare and aggressive pediatric tumor is associated with biallelic inactivation of SMARCB1, and in 30% of the cases, a predisposing germline mutation is involved.
View Article and Find Full Text PDFMol Genet Genomic Med
November 2020
Background: Rare protein truncating variants of NTHL1 gene are causative for the recently described, recessively inherited NTHL1 tumor syndrome that is characterized by an increased lifetime risk for colorectal cancer, colorectal polyposis, and breast cancer. Although there is strong evidence for breast cancer being a part of the cancer spectrum in these families, the role of pathogenic NTHL1 variants in breast cancer susceptibility in general population remains unclear.
Methods: We tested the prevalence of NTHL1 nonsense variant c.
Importance: Severe coronavirus disease 2019 (COVID-19) can occur in younger, predominantly male, patients without preexisting medical conditions. Some individuals may have primary immunodeficiencies that predispose to severe infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Objective: To explore the presence of genetic variants associated with primary immunodeficiencies among young patients with COVID-19.
The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for the identification of structural variants, sequencing repetitive regions, phasing of alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing.
View Article and Find Full Text PDFStrong inherited predisposition to breast cancer is estimated to cause about 5-10% of all breast cancer cases. As the known susceptibility genes, such as BRCA1 and BRCA2, explain only a fraction of this, additional predisposing genes and related biological mechanisms are actively being searched for. We have recently identified a recurrent MCPH1 germline mutation, p.
View Article and Find Full Text PDF