Clinical, biochemical, and genetic characterization of Lebanese patients with chronic granulomatous disease due to NCF2 pathogenic variants.

Clin Immunol

Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chronic Granulomatous Disease (CGD) is caused by mutations in the NADPH oxidase complex that impair the ability of phagocytes to eliminate injested pathogens. As a result, patients with CGD suffer from recurrent infections and chronic inflammation. We report the clinical, biochemical, and genetic basis of the disease in 17 CGD patients from Lebanon. Whole exome sequencing (WES) identified 2 distinct mutations in NCF2 resulting in the deletion of exons 3 and 5, accounting for 82 % of the cases that underwent WES. This high prevalence provided the rationale for a diagnostic strategy involving assessment of NADPH oxidase function, identification of the affected protein, and targeted gene sequencing. Using this approach, 3 additional CGD patients with simmilar deletions were identified, supporting the presence of a founder effect in the Lebanese population. This biochemical and tageted sequencing approach is rapid, reliable, and cost-effective, making it a particularly valuable diagnostic option for families who cannot afford WES.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2025.110596DOI Listing

Publication Analysis

Top Keywords

clinical biochemical
8
biochemical genetic
8
chronic granulomatous
8
granulomatous disease
8
disease cgd
8
nadph oxidase
8
cgd patients
8
sequencing approach
8
genetic characterization
4
characterization lebanese
4

Similar Publications

Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.

View Article and Find Full Text PDF

Bioinformatics analysis of a geneframeshift mutation in a patient with Dent disease.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Nephropathy and Rheumatology, Third Xiangya Hospital, Central South University, Changsha 410013.

Dent disease is a rare X-linked recessive inherited renal tubular disorder characterized by low molecular weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, and other clinical features, and can lead to progressive renal failure. It is primarily caused by mutations in the gene. This article reports the case of a 10-year-old male patient of Chinese descent who was incidentally found to have asymptomatic proteinuria during a routine health examination.

View Article and Find Full Text PDF

Objectives: In this study, we explored the mechanism by which DDIT4 influences the polarization phenotypic transformation of macrophages and inflammation through the regulation of mTOR signaling pathway, providing a new mechanism and target for the treatment of diabetic nephropathy.

Methods: The degree of inflammation and injury in renal tissues of diabetic kidney disease (DKD) animal model was evaluated using biochemical assays, renal pathology examinations, and Western blot tests. Podocytes and macrophages were isolated from renal tissues to observe the extent of podocyte injury and the quantity and polarization phenotype of macrophage infiltration.

View Article and Find Full Text PDF

Background: Tetrandrine (TET) demonstrates therapeutic potential for hypoxic pulmonary hypertension (HPH); however, its precise pharmacological mechanisms remain unclear. In this study, we aimed to investigate the effects of TET on pulmonary vascular remodeling (PVR) in HPH and elucidate the molecular pathways through which TET ameliorates HPH.

Methods: We established a rat model of HPH and evaluated the therapeutic effects of TET by measuring hemodynamic parameters, assessing right ventricular hypertrophy, and analyzing pathological changes in lung tissue.

View Article and Find Full Text PDF

Background: Pulmonary Hypertension (PH) is a significant contributor to cardiac mortality in Dilated Cardiomyopathy (DCM) patients. Inflammatory processes and oxidative stress play pivotal roles in the advancement of Pulmonary Hypertension (PH). The Monocyte-to-High-- Density-Lipoprotein Cholesterol Ratio (MHR), a newly identified biomarker indicative of inflammatory and oxidative stress, has not been extensively researched in the context of pulmonary hypertension, especially within the scope of dilated cardiomyopathy.

View Article and Find Full Text PDF