Effect of three polysaccharides with different charge characteristics on the properties of highland barley starch gel.

Int J Biol Macromol

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Highland barley, a nutritious whole grain, faces limited market utilization due to the poor heating stability of its starch. The aim of this study was to investigate the effects of three differently charged ionic polysaccharides-guar gum (GG), xanthan gum (XG), and carboxymethyl chitosan (CMC)-on the gel properties of highland barley starch (HBS). GG and XG notably increased pasting viscosity, viscoelasticity, hardness, and strength of HBS gels. Conversely, CMC resulted in decreased gel properties. All three polysaccharides enhanced OH tensile vibration (3000-3800 cm), with GG and XG promoting denser honeycomb network structures and lower spin-spin relaxation time (T), indicating improved structural integrity. In contrast, low concentrations of CMC led to disorder and loose structure. Hydrogen bonding and electrostatic interactions were the main forces by which polysaccharides influenced the properties of starch gels. This research contributes to enhancing the properties of HBS gel during heating and expanding its commercial applications. It also provides some insights to understand the interaction between different charged polysaccharides and starch.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136267DOI Listing

Publication Analysis

Top Keywords

highland barley
12
three polysaccharides
8
properties highland
8
barley starch
8
gel properties
8
properties
5
starch
5
polysaccharides charge
4
charge characteristics
4
characteristics properties
4

Similar Publications

Analysis of antioxidant capacity and wine quality characteristics of fermented colored highland barley based on metabolomics.

Food Chem X

August 2025

College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.

Colored highland barley is a promising nutrient-rich functional food. However, antioxidant capacity after fermentation and the quality of the resulting wine remain unexplored. This study investigated how the accumulation of non-volatile metabolites in four fermented colored highland barley varieties influences antioxidant capacity and wine quality.

View Article and Find Full Text PDF

In embedding systems, protein-polysaccharide complexes can be utilized as wall materials to improve the bioavailability and activity of bioactive substances during delivery. This study used the antisolvent precipitation method to manufacture gliadin from highland barley distillers' grains (HBDGG)-chitosan (Cs) nanoparticles. Using a variety of characterization techniques, the microstructure and interaction mechanism of HBDGG-Cs nanoparticles were examined, and their stability was assessed.

View Article and Find Full Text PDF

Effects of water migration and grain structural evolution on substance dissolution and consistency variation during cooking of different foxtail millet varieties porridge.

Food Chem

August 2025

College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China. Electronic address: shen

Different millet varieties exhibit distinct porridge consistency, influencing consumer preferences. This study investigated water migration and grain structural evolution influencing solids leaching and consistency in five commercial foxtail millet varieties during cooking. Using texture analysis, low-field NMR, stereomicroscopy, and leaching assays, we quantified dynamic changes over a 40-min cooking period.

View Article and Find Full Text PDF

Preparation Optimization and Antioxidant Properties of the -Glucan and Ferulic Acid/Quercetin Complex from Highland Barley ( var. ).

Foods

August 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.

Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley ( L. var. Hook.

View Article and Find Full Text PDF

This study investigated the synergistic effects of hydrocolloids (guar gum, GG; xanthan gum, XG; and carboxymethyl chitosan, CMC) and alkaline salts (NaCO and NaHCO) on germinated highland barley noodles. Hydrocolloids reduced cooking loss, breakage rate, and thermal decomposition of noodles while improving elongation, hardness, springiness, and chewiness. GG exhibited the most significant effects.

View Article and Find Full Text PDF