98%
921
2 minutes
20
A synthetic route to -AB-corroles combining the macrocyclic core with a hydrazone moiety, based on the reactivity of azoalkenes toward dipyrromethanes, has been established with the aim of developing a new class of photosensitizers for photodynamic therapy of lung cancer. The study of the photophysical properties of the novel macrocycles allowed the identification of photosensitizers with absorption within the phototherapeutic window and high singlet oxygen quantum yield. Relevant structure-photodynamic activity correlations were established by studying the new corroles-based photodynamic therapy (PDT) in human lung cancer cell lines (A549 and H1299). The methyl-hydrazone corroles were more active than phenyl-hydrazone corroles, with the -Boc and -Ts groups being key structural features to ensure high activity. The lead photosensitizers, with IC values below 100 nM and no cytotoxicity per se, were significantly more active than 5,10,15-triphenylcorrole, showing that the presence of the hydrazone functional group has a strong influence on PDT activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.4c01824 | DOI Listing |
Biomaterials
August 2025
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. Electronic address:
Wearable bioelectronics have transformed modern biomedical applications by enabling seamless integration with biological tissues, providing continuous, comprehensive, and personalized healthcare. Skin cancer, particularly melanoma, poses a significant clinical challenge due to its high metastatic potential and associated mortality. Traditional diagnostic approaches face limitations in accuracy, accessibility, and reproducibility, while existing treatments are often constrained by systemic toxicity and therapeutic resistance.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,
Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.
View Article and Find Full Text PDFInorg Chem
September 2025
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
This study focuses on designing and developing a novel three-dimensional porphyrinic covalent organic framework (3D-Por-COF) to enhance anticancer sono-photodynamic therapy (SPDT). Leveraging the unique structural advantages of 3D COFs, this work addresses the limitations of traditional 2D-Por-COFs, particularly regarding reactive oxygen species (ROS) production and therapeutic efficacy. The newly developed 3D-Por-COF demonstrated significantly higher ROS generation under combined sonodynamic and photodynamic conditions, leading to an improved therapeutic effect against prostate cancer cells.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.
View Article and Find Full Text PDFLasers Med Sci
September 2025
Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.
To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).
View Article and Find Full Text PDF