A mutation with knockout sheep by CRISPR/Cas9 promotes skeletal muscle myofiber hyperplasia.

Elife

State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural Uni

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutations in the well-known Myostatin () produce a 'double-muscle' phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a mutation with knockout sheep, in which the and dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of , resulting in cysteine-depleted at amino acid position 73, and the double allele mutation led to inactivation of gene. The mutation with knockout sheep highlights a dominant 'double-muscle' phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the mutation with knockout mediated the activation of via the MEK-ERK-FOSL1 axis. The activated promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452178PMC
http://dx.doi.org/10.7554/eLife.86827DOI Listing

Publication Analysis

Top Keywords

mutation knockout
16
knockout sheep
12
promotes skeletal
8
skeletal muscle
8
'double-muscle' phenotype
8
gene mutation
8
smaller myotubes
8
mutation
6
sheep crispr/cas9
4
crispr/cas9 promotes
4

Similar Publications

Ultra-high field strength electroporation enables efficient DNA transformation and genome editing in nontuberculous mycobacteria.

Microbiol Spectr

September 2025

Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.

Efficient DNA delivery is essential for genetic manipulation of mycobacteria and for dissecting their physiology, pathogenesis, and drug resistance. Although electroporation enables transformation efficiencies exceeding 10⁵ CFU per µg DNA in and , it remains highly inefficient in many nontuberculous mycobacteria (NTM), including . Here, we discovered that NTM such as exhibit exceptional tolerance to ultra-high electric field strengths and that hypertonic preconditioning partially protects cells from electroporation-induced damage.

View Article and Find Full Text PDF

Through horizontal gene transfer, closely related bacterial strains assimilate distinct sets of genes, resulting in significantly varied lifestyles. However, it remains unclear how strains properly regulate horizontally transferred virulence genes. We hypothesized that strains may use components of the core genome to regulate diverse horizontally acquired genes.

View Article and Find Full Text PDF

Plasminogen activator inhibitor-1 (PAI-1) deficiency is a rare disorder that causes moderate to severe bleeding and cardiac fibrosis, caused by mutation in the gene and no detectable circulating PAI-1 protein. There are currently no therapies that can effectively replace PAI-1 because the protein has a short half-life. An alternative approach to using recombinant protein is to endogenously increase circulating PAI-1 levels using mRNA therapy.

View Article and Find Full Text PDF

The GM2 gangliosidoses are lysosomal storage disorders exhibiting a spectrum of neurological phenotypes ranging from childhood death to debilitating adult-onset neurological impairment. To date, no mouse model harbouring a specific human mutation causing GM2 gangliosidosis has been created. We used CRISPR/Cas9 to generate knockin (KI) mice with the common adult-onset Hexa Gly269Ser variant as well as knockout (KO) mice with Hexa mutations expected to cause complete HexA deficiency.

View Article and Find Full Text PDF

The bone morphogenetic protein (BMP)-SMAD signaling pathway is central to regulating hepcidin, the master regulator of systemic iron homeostasis. We have previously demonstrated that BMP6, BMP2, and, to a lesser extent, BMP5 are the major ligands contributing to hepcidin and iron homeostasis regulation in vivo. Hemojuvelin (HJV) and homeostatic iron regulator (HFE) are hepcidin modulators that are mutated in hereditary hemochromatosis.

View Article and Find Full Text PDF