Probing Deuteration-Induced Phase Separation in Supported Lipid Monolayers using Hyperspectral TERS Imaging.

J Phys Chem Lett

Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we investigate the impact of deuteration on the formation of phase-separated domains in supported lipid monolayers using hyperspectral Tip-Enhanced Raman Spectroscopy (TERS) imaging. The intricate organization of biological membranes plays a crucial role in cellular functions. Various factors that influence domain formation have been identified in previous studies such as lipid tail length and cholesterol concentration. Deuterium labeling of lipids has proven useful for probing cellular structures and dynamics, but its impact on lipid phase separation remains underexplored. By examining 1:1 mixed monolayers of dipalmitoylphosphatidylcholine (DPPC) and deuterated DPPC on Au(111) surfaces, we reveal partial segregation of domains rich in deuterated and nondeuterated lipids. This study addresses a gap in knowledge by examining the impact of deuteration on lipid tail behavior, offering new insights into how even subtle structural modifications can influence phase behavior. Furthermore, it demonstrates that TERS can be a powerful, nondestructive, and label-free nanoanalytical tool for analyzing lipid membranes and advance the field of membrane biophysics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01994DOI Listing

Publication Analysis

Top Keywords

phase separation
8
supported lipid
8
lipid monolayers
8
monolayers hyperspectral
8
ters imaging
8
impact deuteration
8
lipid tail
8
lipid
6
probing deuteration-induced
4
deuteration-induced phase
4

Similar Publications

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF

Mitochondria-associated condensates maintain mitochondrial homeostasis and promote lifespan.

Nat Aging

September 2025

State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.

Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria.

View Article and Find Full Text PDF

Synergistic ammonia recovery from high-ammonia anaerobic digestate via coupled bipolar electrodialysis and membrane contactor system.

Bioresour Technol

September 2025

Center for Water Cycle Research, Climate and Environmental Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea. Electronic a

This study evaluates ammonia gas recovery from high-strength anaerobic digestate using a bipolar membrane electrodialysis (BPED) and membrane contactor (MC). Ammonia is a promising carbon-neutral energy carrier, while digestates present both environmental challenges and opportunities for ammonia recovery. The BPED was tested at 2,000---10,000 mg-N/L under varying voltages and flow rates, achieving up to 87.

View Article and Find Full Text PDF

CpG-A induces liquid-liquid phase separation of HMGB1 to activate the RAGE-mediated inflammatory pathway.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.

View Article and Find Full Text PDF