98%
921
2 minutes
20
Bioelectronic implants featuring soft mechanics, excellent biocompatibility, and outstanding electrical performance hold promising potential to revolutionize implantable technology. These biomedical implants can record electrophysiological signals and execute direct therapeutic interventions within internal organs, offering transformative potential in the diagnosis, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive two dimensionally layered material, which we refer to as OBXene), which exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. We report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446273 | PMC |
http://dx.doi.org/10.1126/sciadv.adp8866 | DOI Listing |
Nanoscale
September 2025
School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
Transition metal (TM) doped boron clusters have attracted considerable attention due to their intriguing electronic structures and diverse bonding patterns. Here, we explore the structural evolution and electronic properties of anionic Pt doped boron clusters using the CALYPSO method and density functional theory (DFT) calculations. The global minimum structures exhibit a distinct morphological transition.
View Article and Find Full Text PDFACS Nano
September 2025
Materials Genome Institute, Shanghai University, Shanghai 200444, China.
RuO, the benchmark catalyst for the oxygen evolution reaction (OER), has traditionally been considered Pauli paramagnetic; however, recent findings have demonstrated its antiferromagnetic (AFM) properties, hinting at the opportunity to enhance RuO's OER performance by manipulating its magnetic traits. In this study, we successfully induced weak ferromagnetism in commercial RuO, transitioning it from an AFM state using an electrochemical sodiation method. This process resulted in high activity, achieving an overpotential of 145 mV to reach 10 mA cm and extending the service hours by more than 13 times compared to pristine RuO in 0.
View Article and Find Full Text PDFNat Commun
September 2025
Institute for Theoretical Physics, University of Regensburg, Regensburg, Germany.
The nature of the dominant pairing mechanism in some two-dimensional transition metal dichalcogenides is still debated. Focusing on monolayer 1H-NbSe, we show that superconductivity can be induced by the Coulomb interaction when accounting for screening effects on the trigonal lattice with multiple orbitals. Using ab initio based tight-binding parametrizations for the relevant low-energy d-bands, we evaluate the screened interaction microscopically.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
Single-cluster catalysts (SCCs) leverage superatomic properties via well-defined geometric/electronic configurations to enable novel reactions. The development of SCCs has facilitated atomic-level insights into catalyst design, thereby advancing our understanding of the fundamental nature of catalytic reactions. While orbital symmetry rules guide unimolecular catalyst design, the role of superatomic orbital symmetry in SCC reactivity remains elusive.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan.
Monolayer Janus transition-metal dichalcogenides possess Ising- and Rashba-type spin-orbit-couplings (SOC), leading to intriguing spin splitting effects at K and K', and around Γ points across the wide energy range. Using first-principles calculations, we unveil these SOC characteristics in metallic Janus NbSSe and demonstrate its potential for optically controlled spin current generation. On the basis of the symmetry of the system, we show that different linear polarized light can selectively drive spin currents of distinct spin components.
View Article and Find Full Text PDF