Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Monolayer Janus transition-metal dichalcogenides possess Ising- and Rashba-type spin-orbit-couplings (SOC), leading to intriguing spin splitting effects at K and K', and around Γ points across the wide energy range. Using first-principles calculations, we unveil these SOC characteristics in metallic Janus NbSSe and demonstrate its potential for optically controlled spin current generation. On the basis of the symmetry of the system, we show that different linear polarized light can selectively drive spin currents of distinct spin components. Our findings establish NbSSe as a promising candidate for next-generation optospintronic technologies, which is offering a pathway toward the development of polarization-tunable spin-current sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cp02135a | DOI Listing |