Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Non-typhoidal (NTS) serovars are the leading global cause of gastroenteritis and have established reservoirs in food animals.

Gap Statement: Due to a lack of surveillance, there is limited information on the distribution of NTS serovars in India.

Aim: Here, we investigated the epidemiology, sequence types, serovar distribution, phylogenetic relatedness, and antimicrobial resistance patterns of NTS in humans and animals across a large geographic area in Northern India.

Methodology: We collected stool samples from patients with diarrhea who presented to 14 laboratories in Chandigarh and from five states in India (Punjab, Haryana, Uttarakhand, Himachal Pradesh, and Rajasthan). We sequenced the genomes and analyzed 117 NTS organisms isolated from humans and animals. Minimum inhibitory concentrations (MICs) were estimated using a Vitek2 system.

Results: The prevalence of NTS in participants presenting to our study with diarrhea was 1.28 %, affecting all age groups. All NTS caused moderate to severe diarrhea. We found a high diversity of serovars with considerable serovar and sequence types (STs) overlap and phylogenetic closeness between isolates from human infections and food animals. We report serovars such as Agona, Bareilly, Kentucky, Saintpaul, and Virchow, causing human infections from north India for the first time. Among the different food-producing animals, pigs appeared to be a key source of human infections. Twenty-eight percent (28 %) of the NTS isolates were multi-drug resistant (MDR), and human isolates showed a higher proportion of resistance. A higher level of contamination of meat samples in our study (8.4 %) potentially suggests a close association of NTS serovars with the food chain and high transmission risk in north India.

Conclusions: This study provides information on AMR genes and plasmid replicons associated with different serovars and highlights the role of food animals in AMR dissemination in our region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439553PMC
http://dx.doi.org/10.1016/j.onehlt.2024.100892DOI Listing

Publication Analysis

Top Keywords

food animals
12
nts serovars
12
human infections
12
antimicrobial resistance
8
nts
8
sequence types
8
humans animals
8
animals
6
serovars
6
food
5

Similar Publications

Tetrodotoxin (TTX), the pufferfish toxin, has the potential to cause fatal food poisoning because of its potent voltage-gated sodium channel (Na) blocking activity. 4-epiTTX, 11-norTTX-6(S)-ol, and 11-oxoTTX are the major TTX analogues found in marine animals; thus, their chemical properties and biological activities should be determined. In this study, these three TTX analogues were purified to a high level (purity >97%) from pufferfish and newts.

View Article and Find Full Text PDF

The Transmission of Clostridioides (Clostridium) difficile with a One Health Perspective.

Infect Dis Clin North Am

September 2025

School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Western Australia, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands 6009, Western Australia, Australia. Electronic add

Clostridioides difficile infection is a significant public health concern traditionally linked to health care settings. However, genomic evidence increasingly supports the spread of C difficile across humans, animals, food, and the environment with sources and reservoirs outside health care settings. Here, we review the transmission routes of C difficile within a One Health framework to uncover these complex interconnections.

View Article and Find Full Text PDF

Degradation and ecological risk of a novel neonicotinoid insecticide imidaclothiz in aquatic environments: Kinetics, photodegradation and hydrolysis pathways, mechanism and metabolites toxicity evaluation.

Pestic Biochem Physiol

November 2025

Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U

Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.

View Article and Find Full Text PDF

Comparison of the toxicity and pharmacological effects of two insecticides against the Asian corn borer, Ostrinia furnacalis.

Pestic Biochem Physiol

November 2025

Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China. Electronic address:

The Asian Corn Borer (ACB), Ostrinia furnacalis (Guenée) is a devastating pest of maize, causing significant yield and economic losses in Asia. GABA receptor inhibitors have served as effective tools for controlling ACB larvae over the past several decades. However, the toxicity levels and pharmacological properties of two insecticides, fluxametamide and fipronil against the ACB are still unclear.

View Article and Find Full Text PDF

Metabolic and microbial responses of Ceratitis capitata to essential oil-based nano-emulsions: Implications for pest management.

Pestic Biochem Physiol

November 2025

Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones científicas, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address:

Essential oils (EOs) are a promising alternative to conventional pesticides, but some challenges like high volatility, poor water solubility, and rapid degradation limit their use in Integrated Pest Management (IPM). To overcome these limitations, this study aimed to develop garlic, eucalyptus, and clove EO-based nano-emulsions (EO-NEs) in a bait treatment format through the high-pressure microfluidization technique and investigated the biological activities against Ceratitis capitata. In addition, the adverse effects of the most promising nano-emulsion were evaluated towards a non-target parasitoid Anagaspis daci.

View Article and Find Full Text PDF