98%
921
2 minutes
20
In the tumor microenvironment, macrophages play crucial roles resulting in tumor suppression and progression, depending on M1 and M2 macrophages, respectively. In particular, macrophage-derived exosomes modulate the gene expression of cancer cells by delivering miRNAs which downregulate specific genes. The communication between macrophages and cancer cells is especially important in immunogenic tumors such as melanoma, where the cancer pogression is significantly influenced by the surrounding immune cells. In this study, we identified that M1 macrophages secrete exosomal miR-29c-3p in the co-culture system with melanoma cells. Simultaneously, ENPP2, the target of miR-29c-3p, decreased in the melanoma cells which are co-cultured with M1 macrophages. Additionally, we observed that the reduction of ENPP2 alleviates melanoma cell migration and invasion, due to the changes of cholesterol metabolism and ECM remodeling. Based on these findings, we demonstrated that M1 macrophages suppress aggressiveness of melanoma cells via exosomal miR-29c-3p-mediated knock-down of ENPP2 in cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438108 | PMC |
http://dx.doi.org/10.1186/s12935-024-03512-0 | DOI Listing |
Int J Biol Macromol
September 2025
School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli
Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.
View Article and Find Full Text PDFBiomaterials
September 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDFNat Prod Res
September 2025
Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, P. R. China.
Chemical investigations of the -butanol extract of the roots of were carried out using column chromatography, flash, semi-preparative HPLC, and chiral HPLC. Five unidentified compounds, including two prenylated coumarin glucosides, two prenylated furanocoumarin glucosides, and a benzofuran glucoside, together with twelve known compounds, were isolated from the -butanol fraction of extract. The structures of these compounds were identified by HRMS, NMR, UV, ECD in combination with quantum chemical calculations, and comparison with the literature.
View Article and Find Full Text PDFOncogene
September 2025
Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
Preferentially expressed antigen in melanoma (PRAME), which is highly expressed in melanoma, is associated with tumor progression and malignancy. Notably, melanoma cells often exhibit inactivation of the tumor suppressor p53 despite carrying the wild-type p53 gene. Here, we investigated the functional interplay between PRAME and p53.
View Article and Find Full Text PDF