Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The calmodulin-binding transcriptional activator (CAMTA) is a small, conserved gene family in plants that plays a crucial role in regulating growth, development, and responses to various abiotic stress. Given the significance of the gene family, various studies have been dedicated to uncovering its functional characteristics. In this study, genome-wide identification and bioinformatics analysis were conducted to explore s in . A total of 17 genes, each containing at least one domain from CG-1, TIG, ANK, or IQ, were identified in the genome. The diversity of could be varied depending on their subcellular localization. An analysis of protein motifs, domains, and gene structure revealed that members within the same subgroup exhibited similar organization, supporting the results of the phylogenetic analysis. Gene duplications occurred among members of the gene family. According to the -regulatory element prediction and protein-protein interaction network analysis, eight genes were subjected to qRT-PCR under drought, heat, and light stresses. The expression profiles indicated that s, particularly , , and , were induced by abiotic stress. This study provides profound insights into the functions of s in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432206PMC
http://dx.doi.org/10.3390/ijms25189767DOI Listing

Publication Analysis

Top Keywords

gene family
16
drought heat
8
heat light
8
abiotic stress
8
gene
6
vital role
4
role gene
4
family
4
family response
4
response drought
4

Similar Publications

The origin and phylogenetic distribution of symbiotic associations between nodulating angiosperms and nitrogen-fixing bacteria have long intrigued biologists. Recent comparative evolutionary analyses have yielded alternative hypotheses: a multistep pathway of independent gains and losses of root nodule symbiosis vs. a single gain followed by numerous losses.

View Article and Find Full Text PDF

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Recessive variants in TWNK cause syndromic and non-syndromic post-synaptic auditory neuropathy through MtDNA replication defects.

Hum Genet

September 2025

College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.

Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.

View Article and Find Full Text PDF

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF

Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.

View Article and Find Full Text PDF