The preparation methods and types of cell sheets engineering.

Stem Cell Res Ther

Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell therapy has emerged as a viable approach for treating damaged organs or tissues, particularly with advancements in stem cell research and regenerative medicine. The innovative technique of cell sheet engineering offers the potential to create a cell-dense lamellar structure that preserves the extracellular matrix (ECM) secreted by cells, along with the cell-matrix and intercellular junctions formed during in vitro cultivation. In recent years, significant progress has been made in developing cell sheet engineering technology. A variety of novel materials and methods were utilized for enzyme-free cell detachment during the cell sheet formation process. The complexity of cell sheet structures increased to meet advanced usage demands. This review aims to provide an overview of the preparation methods and types of cell sheets, thereby enhancing the understanding of this rapidly evolving technology and offering a fresh perspective on the development and future application of cell sheet engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438047PMC
http://dx.doi.org/10.1186/s13287-024-03937-4DOI Listing

Publication Analysis

Top Keywords

cell sheet
20
sheet engineering
12
cell
10
preparation methods
8
methods types
8
types cell
8
cell sheets
8
sheet
5
engineering
4
sheets engineering
4

Similar Publications

Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.

View Article and Find Full Text PDF

The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.

View Article and Find Full Text PDF

Although antimicrobial peptides possess potent antimicrobial activities, the high cost of production, based on amino acid length, has limited their therapeutic and cosmeceutical applications. This study aimed to produce and characterize de novo designed antimicrobial peptides derived from WSKK11 and WSRR11 for efficacy against acne-causing bacteria. Ten designed peptides were evaluated for antimicrobial, hemolytic, and cytotoxic activities, as well as, secondary structures by FTIR and modes of action.

View Article and Find Full Text PDF

The spindle cell variant of papillary thyroid carcinoma (PTC) is exceptionally rare and poses significant diagnostic challenges due to its morphological overlap with other spindle cell lesions of the thyroid. We report a novel case of spindle cell variant PTC in a 66-year-old woman presenting with a TI-RADS 4 thyroid nodule, initially classified as Bethesda III on fine-needle aspiration. Histopathological examination revealed a biphasic tumor composed predominantly of bland spindle cells arranged in solid sheets and fascicles, admixed with entrapped thyroid follicles.

View Article and Find Full Text PDF

Tussah pupa protein (TPP), rich in diverse bioactive components and demonstrating extensive physiological activities, has attracted attention in food processing. However, its limited emulsion stability restricts application potential, requiring improvement of techno-functional properties. The effects of myofibrillar protein (MP) compounding coupled with ultrasonic treatment on the emulsifying properties and nutritional value of TPP were systematically investigated from a multi-scale perspective in this study.

View Article and Find Full Text PDF