98%
921
2 minutes
20
The study aimed to evaluate the effectiveness of machine learning in predicting whether orthodontic patients would require extraction or non-extraction treatment using data from two university datasets. A total of 1135 patients, with 297 from University 1 and 838 from University 2, were included during consecutive enrollment periods. The study identified 20 inputs including 9 clinical features and 11 cephalometric measurements based on previous research. Random forest (RF) models were used to make predictions for both institutions. The performance of each model was assessed using sensitivity (SEN), specificity (SPE), accuracy (ACC), and feature ranking. The model trained on the combined data from two universities demonstrated the highest performance, achieving 50% sensitivity, 97% specificity, and 85% accuracy. When cross-predicting, where the University 1 (U1) model was applied to the University 2 (U2) data and vice versa, there was a slight decrease in performance metrics (ranging from 0% to 20%). Maxillary and mandibular crowding were identified as the most significant features influencing extraction decisions in both institutions. This study is among the first to utilize datasets from two United States institutions, marking progress toward developing an artificial intelligence model to support orthodontists in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429385 | PMC |
http://dx.doi.org/10.3390/bioengineering11090888 | DOI Listing |
Mol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFJ Robot Surg
September 2025
ORSI Academy, Melle, Belgium.
This Letter to the Editor responds to the recent publication by Patel et al. (J Robot Surg. Jul 11;19(1):370, 2025), which outlines a framework and recommendations for telesurgery.
View Article and Find Full Text PDFBiomater Sci
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
Colorectal cancer (CRC) remains a major global health burden, necessitating more effective and selective therapeutic approaches. Nanocarrier-based drug delivery systems offer significant advantages by enhancing drug accumulation in tumors, reducing off-target toxicity, and overcoming resistance mechanisms. This review provides a comprehensive overview of recent advancements in nanocarriers for CRC therapy, including passive targeting the enhanced permeability and retention (EPR) effect, and active targeting strategies that exploit specific tumor markers using ligands such as antibodies, peptides, and aptamers.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China.
Background: As a common postoperative neurological complication, postoperative delirium (POD) can lead to poor postoperative recovery in patients, prolonged hospitalization, and even increased mortality. However, POD's mechanism remains undefined and there are no reliable molecular markers of POD to date. The present work examined the associations of cerebrospinal fluid (CSF) sTREM2 with CSF POD biomarkers, and investigated whether the effects of CSF sTREM2 on POD were modulated by the core pathological indexes of POD (Aβ42, tau, and ptau).
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.
View Article and Find Full Text PDF