Rapid Quantification of Oxytetracycline Based on Fluorescence Enhancement Influenced by pH.

J Fluoresc

Power China Huadong Engineering Corporation Ltd, Hangzhou, Zhejiang Province, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate quantification of antibiotics in environmental samples is typically challenging due to the low antibiotic concentrations and the complexity of environmental matrices. This paper presents a fluorescence spectrometry method for determining oxytetracycline under alkaline conditions. The ionic distribution of the oxytetracycline solution was analyzed based on its dissociation constant. The dimethylamino group plays a crucial role in this method, as it promotes intramolecular charge transfer in the electronic excited state through its electron-donating capability with a lone electron pair. The presented method is straightforward, cost-effective, and holds potential for analyzing oxytetracycline in water sample after further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-024-03941-0DOI Listing

Publication Analysis

Top Keywords

rapid quantification
4
oxytetracycline
4
quantification oxytetracycline
4
oxytetracycline based
4
based fluorescence
4
fluorescence enhancement
4
enhancement influenced
4
influenced accurate
4
accurate quantification
4
quantification antibiotics
4

Similar Publications

Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a naturally occurring polyphenol molecule. It is lipophilic and has demonstrated and therapeutic effects through multiple pathways. Extensive studies on its pharmacological properties have shown its anti-inflammatory, antioxidant, antinociceptive, antimicrobial, antiparasitic, antimalarial, and wound-healing properties.

View Article and Find Full Text PDF

Messenger ribonucleic acid (mRNA), a promising tool in vaccine and therapeutic development, is reliant on intact mRNA delivery into target cells. Given its susceptibility to degradation, ensuring its stability is crucial, necessitating rigorous quality control throughout the product life cycle. This study presents an ion-pair reverse-phase liquid chromatography method that enables rapid and direct mRNA extraction from lipid nanoparticles, facilitated by using a surfactant in the sample preparation.

View Article and Find Full Text PDF

Quantitative diagnostic method to detect Gardnerella vaginalis by droplet digital PCR.

Pract Lab Med

September 2025

Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.

Background: Nucleic Acid Amplification Tests (NAAT) remain one of the most reliable methods for pathogen identification. Given the high false-negative rates associated with traditional staining and microscopic examination, the time-consuming nature and low sensitivity of bacterial culture methods, as well as the inability of conventional NAAT to achieve absolute quantification.

Methods: To achieve rapid and quantitative detection of , we selected the 23S rRNA gene as the target for identification and developed a droplet digital PCR detection method.

View Article and Find Full Text PDF

Purpose: Glecaprevir/Pibrentasvir (GLE/PIB) is approved for chronic hepatitis C treatment in both adults and pediatric patients, no data regarding crushing this drug in pediatric populations. This case series evaluate the efficacy and safety of crushed or split GLE/PIB tablets in two pediatric patients at East Jeddah Hospital, Saudi Arabia.

Patients And Methods: Two treatment-naïve pediatric patients with normal liver function received weight-based GLE/PIB for eight weeks.

View Article and Find Full Text PDF

A novel label-free NIR aptasensor based on triphenylmethane dyes for rapid detection of salicylic acid.

Anal Methods

September 2025

Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.

Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.

View Article and Find Full Text PDF