98%
921
2 minutes
20
Mechanical adaptation of tissue engineering scaffolds is critically important since natural tissue regeneration is highly regulated by mechanical signals. Herein, we report a facile and convenient strategy to tune the modulus of waterborne biodegradable polyurethanes (WBPU) via cross-linking manipulation of phase separation and water infiltration for constructing mechanically adaptable tissue engineering scaffolds. Amorphous aliphatic polycarbonate and trifunctional trimethylolpropane were introduced to polycaprolactone-based WBPUs to interrupt interchain hydrogen bonds in the polymer segments and suppress microphase separation, inhibiting the crystallization process and enhancing covalent cross-linking. Intriguingly, as the crosslinking density of WBPU increases and the extent of microphase separation decreases, the material exhibits a surprisingly soft modulus and enhanced water infiltration. Based on this strategy, we constructed WBPU scaffolds with a tunable modulus to adapt various cells for tissue regeneration and regulate the immune response. As a representative application of brain tissue regeneration model in vivo, it was demonstrated that the mechanically adaptable WBPU scaffolds can guide the migration and differentiation of endogenous neural progenitor cells into mature neurons and neuronal neurites and regulate immunostimulation with low inflammation. Therefore, the proposed strategy of tuning the modulus of WBPU can inspire the development of novel mechanically adaptable biomaterials, which has very broad application value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422185 | PMC |
http://dx.doi.org/10.1093/rb/rbae111 | DOI Listing |
Int J Pharm
September 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit
Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
In order to be able to administer efficient probiotic formulations, it is necessary to process the respective microorganisms gently into suitable dosage forms such as tablets maintaining their viability. In previous studies, the process chain consisting of fluidized bed granulation for life-sustaining drying of Saccharomyces cerevisiae as well as subsequent processing into tablets was investigated. Granules based on dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials were produced and tableted, and physical-mechanical as well as microbiological tablet properties were evaluated.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:
Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.
View Article and Find Full Text PDFAdv Mater
September 2025
Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.
View Article and Find Full Text PDFNat Commun
September 2025
Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, Spain.
Bacteria often encounter physico-chemical stresses that disrupt division, leading to filamentation, where cells elongate without dividing. Although this adaptive response improves survival, it also exposes filaments to significant mechanical strain, raising questions about the mechanochemical feedback in bacterial systems. In this study, we investigate how mechanical strain modifies the geometry of bacterial filaments and influences the Min oscillatory system, a reaction-diffusion network central to division in Escherichia coli.
View Article and Find Full Text PDF