Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120046DOI Listing

Publication Analysis

Top Keywords

microbial strategies
8
environmental remediation
8
mps
6
microbial
4
strategies effective
4
effective microplastics
4
biodegradation
4
microplastics biodegradation
4
biodegradation insights
4
insights innovations
4

Similar Publications

Unlabelled: There is a need for the development of broad-spectrum antiviral compounds that can act as first-line therapeutic countermeasures to emerging viral infections. Host-directed approaches present a promising avenue of development and carry the benefit of mitigating risks of viral escape mutants. We have previously found the SKI (super killer) complex to be a broad-spectrum, host-target with our lead compound ("UMB18") showing activity against influenza A virus, coronaviruses, and filoviruses.

View Article and Find Full Text PDF

Human-associated metagenomic data often contain human nucleic acid information, which can affect the accuracy of microbial classification or raise ethical concerns. These reads are typically removed through alignment to the human genome using various metagenomic mapping tools or human reference genomes, followed by filtration before metagenomic analysis. In this study, we conducted a comprehensive analysis to identify the optimal combination of alignment software and human reference genomes using benchmarking data.

View Article and Find Full Text PDF

Unlabelled: Bovine respiratory disease (BRD) is the primary disease of cattle and is responsible for most of the antibiotic use in the beef industry, both for metaphylaxis and treatment. Infection prevention and targeted treatments would benefit from detecting and identifying bacterial pathogens and, ideally, assessing antibiotic sensitivity. Here, we report success refining targeted metagenomics by hybridization capture sequencing (CapSeq) to detect and genotype bacterial pathogens and genes for antibiotic resistance in BRD.

View Article and Find Full Text PDF

Can We Combine Mouthrinses With Probiotics? An Evaluation of Their Compatibility and Combined Therapy on Oral Biofilms.

J Periodontal Res

September 2025

Department of Oral Health Sciences, Periodontology and Oral Microbiology, KU Leuven, Leuven, Belgium.

Aim: Multiple oral pathologies requiring antiseptic mouthrinses for prevention or treatment. However, nonselective elimination of the microbes may also harm beneficial commensal, healthy bacteria. Promicrobial strategies, such as probiotics, aim to rebalance the oral microbiome rather than eradicate it; however, we hypothesised that their incorporation might be challenged due to the microbiome's inherent resistance to outsiders.

View Article and Find Full Text PDF

Efficacious suppression of primary and metastasized liver tumors by polyIC-loaded lipid nanoparticles.

Hepatology

September 2025

Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.

Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.

View Article and Find Full Text PDF