98%
921
2 minutes
20
Biomolecular simulations often suffer from the "time scale problem", hindering the study of rare events occurring over extended time scales. Enhanced sampling techniques aim to alleviate this issue by accelerating conformational transitions, yet they typically necessitate well-defined collective variables (CVs), posing a significant challenge. Machine learning offers promising solutions but typically requires rich training data encompassing the entire free energy surface (FES). In this work, we introduce an automated iterative pipeline designed to mitigate these limitations. Our protocol first utilizes a CV-free count-based adaptive sampling method to generate a data set rich in rare events. From this data set, slow modes are identified using Koopman-reweighted time-lagged independent component analysis (KTICA), which are subsequently leveraged by on-the-fly probability enhanced sampling (OPES) to efficiently explore the FES. The effectiveness of our pipeline is demonstrated and further compared with the common Markov State Model (MSM) approach on two model systems with increasing complexity: alanine dipeptide (Ala2) and deca-alanine (Ala10), underscoring its applicability across diverse biomolecular simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.4c00764 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.
View Article and Find Full Text PDFJ Biomol NMR
September 2025
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.
Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.