Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modified tRNA anticodons are critical for proper mRNA translation during protein synthesis. It is generally thought that almost all bacterial tRNAs use a modified cytidine-lysidine (L)-at the first position (34) of the anticodon to decipher the AUA codon as isoleucine (Ile). Here we report that tRNAs from plant organelles and a subset of bacteria contain a new cytidine derivative, designated 2-aminovaleramididine (avaC). Like L34, avaC34 governs both Ile-charging ability and AUA decoding. Cryo-electron microscopy structural analyses revealed molecular details of codon recognition by avaC34 with a specific interaction between its terminal amide group and an mRNA residue 3'-adjacent to the AUA codon. These findings reveal the evolutionary variation of an essential tRNA modification and demonstrate the molecular basis of AUA decoding mediated by a unique tRNA modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938285PMC
http://dx.doi.org/10.1038/s41589-024-01726-xDOI Listing

Publication Analysis

Top Keywords

trna modification
12
aua decoding
12
protein synthesis
8
aua codon
8
aua
5
trna
4
modification aminovaleramide
4
aminovaleramide facilitates
4
facilitates aua
4
decoding protein
4

Similar Publications

tRNA-derived small RNAs (tsRNAs) are a class of non-coding RNAs that are generated by cleavage of precursors or mature tRNAs under stress conditions such as hypoxia, oxidative stress and nutrient deficiency. Recent breakthroughs in RNA sequencing technology have revealed their association with cardiovascular diseases (CVDs), including myocardial infarction (MI), atherosclerosis, cardiac hypertrophy, aortic coarctation, and pulmonary arterial hypertension. tsRNAs play important biological functions in these diseases, including the inhibition of apoptosis, epigenetic modification, intercellular signaling mediation, translation, and regulation of gene expression.

View Article and Find Full Text PDF

The AUA isoleucine codon is generally rare and used with varying frequency in bacterial genomes. The tRNA responsible for decoding this trinucleotide must be modified at the wobble position by tRNA lysidine synthetase (TilS) prior to aminoacylation and accommodation at the ribosome. To test the hypothesis that TilS catalytic efficiency correlates with AUA frequency, we cloned tilS genes from bacteria with varying AUA codon usage.

View Article and Find Full Text PDF

Ribosomal RNA (rRNA) modifications are important for ribosome function and can influence bacterial susceptibility to ribosome-targeting antibiotics. The universally conserved 16S rRNA nucleotide C1402, for example, is the only 2'- -methylated nucleotide in the bacterial small (30S) ribosomal subunit and this modification fine tunes the shape and structure of the peptidyl tRNA binding site. The Cm1402 modification is incorporated by the conserved bacterial 16S rRNA methyltransferase RsmI, but it is unclear how RsmI is able to recognize its 30S substrate and specifically modify its buried target nucleotide.

View Article and Find Full Text PDF

Metastasis is the leading cause of cancer related deaths, however therapies specifically targeting metastasis are lacking and remain a dire therapeutic need in the clinic. Metastasis is a highly inefficient process that is inhibited by extracellular stress. Therefore, metastasizing cells that ultimately survive and successfully colonize distant organs must undergo molecular rewiring to mitigate stress.

View Article and Find Full Text PDF

Artemisinin has long been a first-line antimalarial. Yet, its mode of action is still poorly understood. Emergence of artemisinin-resistant strains highlight the importance of addressing this question so as to develop better drugs and overcome resistance.

View Article and Find Full Text PDF