Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The introduction of a noninvasive diagnostic algorithm in 2016 led to increased awareness and recognition of cardiac amyloidosis (CA).

Objectives: The purpose of this study was to analyze the impact of the introduction of the noninvasive diagnostic algorithm on diagnosis and prognosis in a multicenter Italian CA cohort.

Methods: This was a retrospective analysis of 887 CA patients from 5 Italian Cardiomyopathies Referral Centers: 311 light-chain CA, 87 variant transthyretin (TTR)-related CA, 489 wild-type TTR-related CA. Clinical characteristics and outcomes (all-cause mortality and heart failure [HF] hospitalizations) were compared overall and for each CA subtype between patients diagnosed before versus after 2016. Outcomes were further compared by propensity score weighted Kaplan-Meier analysis and Cox regression analysis.

Results: CA diagnoses increased after 2016, in particular for wild-type TTR-related CA. Patients diagnosed after versus before 2016 were older, had less frequently a history of HF prior to diagnosis, and NYHA functional class III-IV at diagnosis. Over a median follow-up of 18 months, 172 (86%) patients diagnosed before 2016 died or had an HF hospitalization, versus 300 (44%) diagnosed after 2016. Propensity score weighted Kaplan-Meier analysis showed worse outcomes ( < 0.001) for patients diagnosed before 2016. At Cox regression analysis, CA diagnosis after 2016 was an independent protective factor for the composite outcome (HR: 0.69;  = 0.001), with interaction by CA subtype (significant in TTR-related CA and null in light-chain).

Conclusions: CA patients diagnosed after 2016 showed a less severe phenotype and a better prognosis. The impact of the noninvasive diagnostic algorithm on outcomes was particularly relevant in TTR-related CA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405895PMC
http://dx.doi.org/10.1016/j.jacadv.2024.101232DOI Listing

Publication Analysis

Top Keywords

noninvasive diagnostic
12
diagnostic algorithm
12
patients diagnosed
12
cardiac amyloidosis
8
introduction noninvasive
8
wild-type ttr-related
8
diagnosed versus
8
versus 2016
8
propensity score
8
score weighted
8

Similar Publications

Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.

View Article and Find Full Text PDF

Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.

View Article and Find Full Text PDF

Donor-derived cell-free DNA (dd-cfDNA) has emerged as a valuable noninvasive biomarker for detecting allograft injury in solid organ transplantation. It is released into the bloodstream from the transplanted organ as a result of cell injury and immune activation, with baseline levels influenced by organ type, tissue turnover, and posttransplant physiological changes. Several analytical platforms are available, including quantitative polymerase chain reaction (PCR), digital droplet PCR, and next-generation sequencing, each differing in sensitivity, throughput, and reporting format.

View Article and Find Full Text PDF

Background: Calcineurin inhibitor (CNI) toxicity is a significant cause of graft dysfunction in kidney transplant recipients, yet distinguishing it from acute rejection (AR) and acute tubular necrosis (ATN) remains challenging. This study investigated the use of urinary mRNA biomarkers as a noninvasive tool for identifying CNI toxicity.

Methods: We retrospectively enrolled 110 kidney transplant recipients and classified them into four groups based on pathological findings: stable graft function (n=35), CNI toxicity (n=25), AR (n=30), and ATN (n=20).

View Article and Find Full Text PDF

A water-soluble NIR-II fluorescent probe for non-invasive real-time detection of blood ATP optoacoustic and fluorescence imaging.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, monitoring.

View Article and Find Full Text PDF