Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Numerous soft actuators based on pneumatic network (PneuNet) design have already been proposed and extensively employed across various soft robotics applications in recent years. Despite their widespread use, a common limitation of most existing designs is that their action is predetermined during the fabrication process, thereby restricting the ability to modify or alter their function during operation. To address this shortcoming, in this article the design of a Reconfigurable, Transformable Soft Pneumatic Actuator (RT-SPA) is proposed. The working principle of the RT-SPA is analogous to the conventional PneuNet. The key distinction between the two lies in the ability of the RT-SPA to undergo controlled transformations, allowing for more versatile bending and twisting motions in various directions. Furthermore, the unique reconfigurable design of the RT-SPA enables the selection of actuation units with different sizes to achieve a diverse range of three-dimensional deformations. This versatility enhances the RT-SPA's potential for adaptation to a multitude of tasks and environments, setting it apart from traditional PneuNet. The article begins with a detailed description of the design and fabrication of the RT-SPA. Following this, a series of experiments are conducted to evaluate the performance of the RT-SPA. Finally, the abilities of the RT-SPA for locomotion, gripping, and object manipulation are demonstrated to illustrate the versatility of the RT-SPA across different aspects.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2023.0072DOI Listing

Publication Analysis

Top Keywords

reconfigurable transformable
8
transformable soft
8
soft pneumatic
8
pneumatic actuator
8
three-dimensional deformations
8
soft robotics
8
robotics applications
8
rt-spa
8
soft
5
actuator tunable
4

Similar Publications

Tourism, Real Estate, and Urban Pressures: The case of Marsascala, Malta.

Open Res Eur

August 2025

Universidad de La Laguna, San Cristóbal de La Laguna, Canary Islands, Spain.

This paper examines the urban transformation of Marsascala, a coastal town in Malta, through the lens of tourism development and its social repercussions. Engaging with Young's (1983) model of touristization and landscape change, and drawing from qualitative interviews, field observations, orthophoto analysis, and secondary data, the study traces the town's evolution from a fishing village to a site of intensive tourism consolidation. Findings reveal how population growth-driven by tourism and foreign labour-has led to overdevelopment, infrastructural strain, and a declining quality of life.

View Article and Find Full Text PDF

Dual-Stimulus Programmed Multiphase Separation and Organization in Coacervate Droplets.

Angew Chem Int Ed Engl

September 2025

Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden, 01069, Germany.

Stimuli-responsive (multiphase) coacervates deserve significant attention as cell-like entities that can adapt to their environment and undergo morphological reconfiguration. In this study, a tandem-triggered transition system is presented that enables the transformation of single-phase coacervates into multiphase structures through the sequential application of two external stimuli: pH and salt concentration. A polyanion containing acid-labile amide bond is incorporated into the membrane-less coacervates.

View Article and Find Full Text PDF

Electronic Structure Reconfiguration of Zn-NB Sites for Enhanced Fenton-Like Catalysis.

Angew Chem Int Ed Engl

September 2025

College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P.R. China.

Despite growing interest in single-atom catalysts (SACs) for Fenton-like reactions, zinc (Zn)-based SACs remain unexplored due to the inherent inertness of Zn, whose fully occupied 3d electronic configuration limits redox activity. Here, we overcome this limitation by introducing boron (B) atoms to reconfigure the electronic structure of Zn-N coordination sites, yielding an activated catalyst denoted as Zn-NBC. This electronic modulation transforms inert Zn-N sites into catalytically active centers (Zn-NB ), enabling significantly enhanced Fenton-like activity.

View Article and Find Full Text PDF

This paper proposes an event-triggered optimal control method for modular reconfigurable manipulators(MRMs) based on model predictive control(MPC). By using a decentralized optimization method based on MPC, the optimal control problem of MRMs is transformed into independent optimization tasks for each module, while a global MPC optimization framework is utilized to coordinate the modules, ultimately optimizing the overall performance of the entire system. In order to avoid the safety hazards caused by excessive torque, hyperbolic tangent function is added to constrain the input torque.

View Article and Find Full Text PDF

Amidst global sustainability imperatives, this study pioneers a solid-state regeneration strategy that transforms spent LiCoO (LCO) cathodes into high-performance materials via amorphous lithium iron phosphate glass (LFPg)-driven structural reconfiguration. Unlike conventional recycling that decomposes cathodes, our approach leverages LFPg's defect-rich framework, high ionic conductivity, and dynamic interfacial activity to directly reconstruct degraded LCO crystals. The LFPg acts as a multifunctional repair agent: creating Li diffusion channels through disorder engineering, eliminating oxygen vacancies via atomic oxygen transfer, scavenging impurities (e.

View Article and Find Full Text PDF