Blood metabolites, neurocognition and psychiatric disorders: a Mendelian randomization analysis to investigate causal pathways.

Transl Psychiatry

Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Neurocognitive dysfunction is observationally associated with the risk of psychiatric disorders. Blood metabolites, which are readily accessible, may become highly promising biomarkers for brain disorders. However, the causal role of blood metabolites in neurocognitive function, and the biological pathways underlying their association with psychiatric disorders remain unclear.

Methods: To explore their putative causalities, we conducted bidirectional two-sample Mendelian randomization (MR) using genetic variants associated with 317 human blood metabolites (n = 215,551), g-Factor (an integrated index of multiple neurocognitive tests with n = 332,050), and 10 different psychiatric disorders (n = 9,725 to 807,553) from the large-scale genome-wide association studies of European ancestry. Mediation analysis was used to assess the potential causal pathway among the candidate metabolite, neurocognitive trait and corresponding psychiatric disorder.

Results: MR evidence indicated that genetically predicted acetylornithine was positively associated with g-Factor (0.035 standard deviation units increase in g-Factor per one standard deviation increase in acetylornithine level; 95% confidence interval, 0.021 to 0.049; P = 1.15 × 10). Genetically predicted butyrylcarnitine was negatively associated with g-Factor (0.028 standard deviation units decrease in g-Factor per one standard deviation increase in genetically proxied butyrylcarnitine; 95% confidence interval, -0.041 to -0.015; P = 1.31 × 10). There was no evidence of associations between genetically proxied g-Factor and metabolites. Furthermore, the mediation analysis via two-step MR revealed that the causal pathway from acetylornithine to bipolar disorder was partly mediated by g-Factor, with a mediated proportion of 37.1%. Besides, g-Factor mediated the causal pathway from butyrylcarnitine to schizophrenia, with a mediated proportion of 37.5%. Other neurocognitive traits from different sources provided consistent findings.

Conclusion: Our results provide genetic evidence that acetylornithine protects against bipolar disorder through neurocognitive abilities, while butyrylcarnitine has an adverse effect on schizophrenia through neurocognition. These findings may provide insight into interventions at the metabolic level for risk of neurocognitive and related disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405529PMC
http://dx.doi.org/10.1038/s41398-024-03095-4DOI Listing

Publication Analysis

Top Keywords

blood metabolites
16
psychiatric disorders
16
standard deviation
16
causal pathway
12
mendelian randomization
8
g-factor
8
mediation analysis
8
genetically predicted
8
associated g-factor
8
deviation units
8

Similar Publications

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF

It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.

View Article and Find Full Text PDF

Novel Visceral Obesity Indicators and Associated Metabolic Fingerprint in Incident Diabetic Retinopathy.

Invest Ophthalmol Vis Sci

September 2025

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, People's Republic of China.

Purpose: Evidence on the association between visceral obesity and diabetic retinopathy (DR) remains sparse and debatable. We aimed to use three novel indicators, body roundness index (BRI), lipid accumulation product (LAP), and visceral adiposity index (VAI), to investigate the longitudinal relationship between visceral obesity and DR, and explore the potential metabolic mechanisms.

Methods: In this prospective study based on the UK Biobank (UKB), 14,738 individuals with diabetes free of DR at baseline were included.

View Article and Find Full Text PDF

Background: L. has a long history of ethnomedicinal use for various ailments. This review focuses on the botany, ethnopharmacology, phytochemistry, pharmacological effects, and clinical applications of safflower, aiming to enhance current research in this field.

View Article and Find Full Text PDF

The gut microbiota, comprising trillions of bacteria, fungi, and viruses, exists in symbiosis with the host. As the largest microbial ecosystem in the human body. The gut microbiota not only shapes the homeostasis of the intestinal microenvironment through gut-derived metabolites but also exerts regulatory effects on the functions of diverse tissues and organs throughout the body via the intricate "gut-distal organ axis" mechanism.

View Article and Find Full Text PDF