98%
921
2 minutes
20
Peppers globally renowned for their distinctive spicy flavor, have attracted significant research attention, particularly in understanding spiciness regulation. While the activator MYB's role in spiciness regulation is well-established, the involvement of repressor MYB factors remains unexplored. This study identified the MYB4 transcription factor through RNA-seq and genome-wide analysis as being associated with spiciness. Consequently, CcMYB4-2 and CcMYB4-12 were cloned from Hainan Huangdenglong peppers, both exhibiting nuclear subcellular localization. qRT-PCR analysis revealed that CcMYB4-2/4-12 had high expression levels during the accumulation period of capsaicin, but there were differences in their peak expression levels, which may be related to the formation of pepper spiciness. Heterologous expression in Arabidopsis thaliana resulted in significantly elevated CcMYB4-2/4-12 expression levels and reduced lignin content. In CcMYB4-2 silenced plants, PAL expression remained unchanged, while PAL expression significantly increased in CcMYB4-12 silenced plants, leading to elevated lignin content and reduced capsaicin content. Yeast one-hybrid (Y1H) and dual luciferase reporter assays (DLR) demonstrated that CcMYB4-2/4-12 inhibited the transcription of CcPAL2 by binding to its promoter. Notably, CcMYB4-12 exhibited more pronounced inhibition. Therefore, it is hypothesized that CcMYB4-12 plays a pivotal role in regulating lignin and capsaicin biosynthesis. This study elucidates the molecular mechanism of MYB4 binding to the PAL promoter, providing a foundational understanding for analyzing phenylpropanoid metabolism and its diverse branches. KEY MESSAGE: Through functional verification analysis of the repressor CcMYB4, transcriptional regulation experiments revealed that CcMYB4 can bind to the CcPAL2 promoter, negatively regulating the capsaicin biosynthesis in Capsicum chinense fruits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135592 | DOI Listing |
Gene
September 2025
Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 21002
Capsaicin (CAP), a major natural functional component in chili peppers, has garnered considerable attention for its health benefits, including lipid-lowering effects, and its precise mechanisms remain unclear. This study aims to investigate the lipid-reducing effects of CAP on oleic acid (OA)-induced lipid accumulation in HepG2 cells and explore the underlying mechanisms. The results showed that CAP exerted lipid-lowering effects by reducing triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and increasing high-density lipoprotein cholesterol (HDL-C) in OA-induced HepG2 cells.
View Article and Find Full Text PDFJ Nanobiotechnology
September 2025
Department of Endocrinology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210002, China.
Microneedle patch encapsulated with active medication holds significant potential promise in the realm of anti-obesity therapy. Nevertheless, the improvement of actives delivery efficiency remains a significant challenge. In this paper, we present novel separable cryo-microneedles patches delivered with capsaicin integrated mesoporous dopamine (mPDA) for obesity treatment through activating TRPV1 and inducing lipid droplet dissolution.
View Article and Find Full Text PDFAssay Drug Dev Technol
September 2025
School of Pharmacy & Technology Management, SVKM NMIMS Global University, Dhule, India.
In Silico Pharmacol
August 2025
Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005 India.
Prostate cancer incidence is expected to double by 2040, with related deaths rising by 80% highlighting the urgent need for effective prevention and treatment strategies. This growing concern has increased interest in utilising natural plant compounds for cancer therapies. Capsaicin, a key component of L.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America.
The Transient Receptor Potential Vanilloid sub-type 1 (TRPV1) is an ion channel that is activated by heat, extracellular protons, oxidation, and it is implicated in various aspects of inflammatory pain. In this study, we uncover that residue M308 in the TRPV1 ankyrin repeat domain (ARD) stands out from most other buried ARD residues because of the greater number of human missense variants at this position while maintaining a high degree of conservation across species and TRPV channel subtypes. We use mutagenesis and electrophysiology to examine this apparent discrepancy and show that substitutions at position M308 that preserve or reduce side-chain volume have no effect on channel function, whereas substitutions with larger or more polar residues increase channel activity in response to capsaicin or temperature.
View Article and Find Full Text PDF